
Vivado从此开始（To Learn Vivado From Here）







本书围绕Vivado四大主题









作者：高亚军（

•

•

•

•

Lauren Gao

RTL Coding Style

Part 1

Blocking statements vs. Non-blocking statements

Incomplete sensitivity list

Latch inference

– An if statement without an else clause

– An intended register without a rising edge or falling edge construct

: more difficult timing analyses

Incomplete reset specification

– the reset signal will get hooked to the CE pin, thereby creating another unique

control set

Basic Functionality

process (G, D)
begin
if (G=‘1’) then
Q <= D;
end if;
end process;

always @(G or D)
if (G)
Q = D;

always @(posedge clk)
if (rst)
reg1<= 1’b0;

else
begin
reg1 <= din1;
reg2 <= din2;

end

all_latches

Slice Flip-Flops and Flip-Flop/Latches

Each slice has four flip-flop/latches (FF/L)

– Can be configured as either flip-flops or
latches

– The D input can come from the O6 LUT
output, the carry chain, the wide
multiplexer, or the AX/BX/CX/DX slice input

Each slice also has four flip-flops (FF)

– D input can come from O5 output or the
AX/BX/CX/DX input

• These don’t have access to the carry chain,
wide multiplexers, or the slice inputs

If any of the FF/L are configured as

latches, the four FFs are not available

LUT/RAM/SRL

LUT/RAM/SRL

LUT/RAM/SRL

LUT/RAM/SRL

0 1

FF/L
FF

Pros and Cons

– Minimize coding effort

– May lead to inefficient structures thereby degrading performance

Xilinx recommends representing the same functionality using constructs

that are easier for the tool to interpret

TIP

– It is acceptable to infer loops for basic connectivity

– when the code infers hardware resources (other than just wires/interconnects), it

is better to avoid loops

Use of Loops in Code

reg [3:0] dout;
integer i;
always@(posedge clk)
begin
for(i=0;i<=3;i=i+1)
dout[3-i] <= din[i];

end

always@(posedge clk)
begin
for(i=0;i<=3;i=i+1)
begin
if(en[i])
dout[i] <= i;

end
end

Mealy vs. Moore Styles

– Main difference:

• Mealy: Current state + Input => output

• Moore: current state => output

– In general, Moore state machines implement best in FPGA devices

• Most often one-hot state machines is the chosen encoding method, and there is little

decode logic necessary for output values

One-Hot vs. Binary Encoding

– The two most popular for FPGA designs are binary and one-hot

– Vivado: FSM_ENCODING

• "one_hot", "sequential", "johnson", "gray", "auto" and "none“, default: “auto”

State-Machine Guidance

(* fsm_encoding = "one_hot" *) reg [7:0] my_state;
--------------------------VHDL------------------------------
type count_state is (zero, one, two, three, four, five, six);
signal my_state : count_state;
attribute fsm_encoding : string;
attribute fsm_encoding of my_state : signal is "sequential";

Debug logic

– The logic that is not necessary for the design function, but which is useful in the

design analysis

Several methods can assist in this objective

– Guard the logic with a `ifdef, parameter, or generic that can be set to disable or

enable these sections of code

– Code the logic in a way to more easily facilitate commenting it out for the future

– Have a separate debug version of a module or entity to interchange for this

purpose

Target

– Have a good methodology for debugging the design code

– Have a good way to remove that logic

Use of Debug Logic

Debug logic

User logic

DUT

A control set is the grouping of control signals

– set/reset

– clock enable

– clock

Registers within a slice all share common control signals

– only registers with a common control set may be packed into the same slice

Designs with several unique control sets

– Have a lot of wasted resources

– Fewer options for placement resulting in higher power and lower performance

Designs with fewer control sets

– Have more options and flexibility in terms of placement, generally resulting in

improved results

Control Signals and Control Sets

Control Sets

All flip-flops and flip-flop/latches share the same

CLK, SR, and CE signals

– This is referred to as the “control set” of the flip-flops

– CE and SR are active high

– CLK can be inverted at the slice boundary

If any one flip-flop uses a CE, all others must use

the same CE

– CE gates the clock at the slice boundary

– Saves power

If any one flip-flop uses the SR, all others must use

the same SR

– The reset value used for each flip-flop is individually set

by the SRVAL attribute

DFF/LATCH

D

CE

SR

Q

CK

D

CE

SR

AFF/LATCH

CK

D

CE

SR

Q

CK

D

CE

SR

Q

CK

D

CE

SR

Q

CK

AFF

DFF

●
●
●

●
●
●

report_control_sets

– Indicator of possible packing fragmentation and fitting issues

– Run the –verbose option to generate a full list

Control Set

If an initial state is not specified, it defaults to a logic zero

It is not necessary to code a global reset for the sole purpose of

initializing the device

Limits the overall fanout of the reset net

Simplifies the timing of the reset paths

Functional simulation should easily identify whether a reset is needed or

not

No reset brings much greater flexibility in selecting the FPGA resources

to map the logic

When and Where to Use a Reset

Delay line

• SRL

• SRL + Registers

• All registers

• LUT or Block memory

Without resetWith reset

• registers with a

common reset

Use Active-High Control Signals

Flip-Flop

Hierarchical design methods can proliferate LUT usage

on active-low control signals

The inverters

cannot be

combined into

the same slice

This consumes

more power and

makes timing

difficult

Control a Localized Reset Network

clk

D Q D Q D Q D Q

rst_n

Synchronous reset

High effective

Local reset

Asynchronous set

Low effective

Synchronous Bridge

The number of flip-flops in the chain determines the minimum

duration of the reset pulse issued to the localized network

Control a Localized Reset Network

Verilog

always @ (posedge clk or negedge rst_n) //async. Negedge reset
begin
if (!rst_n)
synchronizer_ckt <= 4’hf // 4 stage reset syncornization

else
synchronizer_ckt <= {synchornizer_ckt[2:0], 1’b0};

end
assign synchronized_rst_n = ~synchronizer_ckt[3];
// the final reset signal which is used to reset the actual
// flops in the design

Ug949: UltraFast Design Methodology Guide for the Vivado

Design Suite, chapter 4

Wp272: Get Smart About Reset: Think Local, Not Global

More Info

