. > o
VivadoMIEFFIS (To Learn Vivado From Here)

\\ D VB JJ& T)’Ll"‘/)lhﬁ
; v
IR gi Jj ﬁ
yiiae i om Here \ i’,
N, Tcl i A vy 4 A

£&: BEE (Xilinx& # M F 8%k TEIF)
20124E2 1, WK Gt TFPCAM B FZR S4# (F1K))
201249 H, AAWMERAMKRE (VivadoA 15 #E &)
201546 7H, WK (G TFPCAR K FRESAHE (F2M))
20164 7TH, KA W& KRRE (HXilinx SAEFHLS)

WAL AT: ¥ Vivadofr g AT
ﬁ%ﬁk&&:ﬁAk%%W 5 Bl A R %t SR AR A AR
WMAE IR SHEREETR, ZTHEFTFLE

& XILINX > ALL PROGRAMMABLE.

& XILINX

ALL PROGRAMMABLE-

RTL Coding Style
Part 2

Lauren Gao

P > o
Know What You Infer

> For larger than 4-bit addition, subtraction and add-sub
— Carry chain + one LUT per 2-bit addition
— 8-bit + 8-bit adder: 8 LUTs + associated carry chain

» Ternary addition and without the use of a register in between

— One LUT per 3-bit addition
— 8-bit + 8-bit + 8-bit adder: 8 LUTs + associated carry chain

» In general, multiplication is targeted to DSP blocks

— Three levels of pipelining around it generates best setup, clock-to-out, and power
characteristics

& XILINX > ALL PROGRAMMABLE.

P > o
Know What You Infer

» Shift registers or delay lines that do not require reset or multiple tap
points are generally mapped into Shift Register LUTs or SRLs

— To best utilize SRLs, avoid using reset for those blocks

— In 7-series FPGA, each LUT can delay serial data from 1 to 32 clock cycles

» For conditional code resulting in standard MUX components
— 4-to-1 MUX: 1 LUT, one logic level
— 8-to-1 MUX: 2 LUTs + 12 MUXF7, one logic level
— 16-to-1 MUX: 4 LUTS + 1 MUXF7 + 1 MUXFS8, one logic level

& XILINX > ALL PROGRAMMABLE.

Performance Considerations When Implementing RAM

» Using Dedicated Blocks or Distributed RAMs

» Using the Output Pipeline Register
» Selecting the Proper Block RAM Write Mode

& XILINX » ALL PROGRAMMABLE.

. =
Using Dedicated Blocks or Distributed RAMs

» RAMs may be implemented in either
— the dedicated block RAM
— Within LUTs using distributed RAM

» The First Choice Criterion: Required Depth

— Memory arrays deeper than 256 are generally implemented in Block memory

~

& XILINX » ALL PROGRAMMABLE.

Using the Output Pipeline Register

» Using an output register is required for high

performance designs [Register out of memory

primitives

— It is recommended for all designs

— This improves the clock to output timing of the

block RAM
» Having both registers has a total read Block |[Dp 2| !|D @
latency of 3 RAM
JAN JAN

— Determine early whether an extra clock cycle of
latency during reads is tolerable

» Using asynchronous reset impacts RAM
. . Register out of memory
inference, and should be avoided core

& XILINX > ALL PROGRAMMABLE.

e AR
Selecting the Proper Block RAM Write Mode

» Xilinx recommends the following guidelines for selecting the best write
mode for a particular operation

— Consider Functionality First
e If you must see the prior value in the block RAM during write, select READ_FIRST
e If you want to read the new data being written to the block RAM use WRITE_FIRST

e If you do not care about the data read during writes, then the next selection criteria has
to do with memory collisions

— Use NO_CHANGE Mode

* In all other cases, Xilinx recommends NO_CHANGE mode. NO_CHANGE has the best
power characteristics

READ_FIRST WRITE_FIRST NO_CHANGE

& XILINX » ALL PROGRAMMABLE.

DSP Slice Features

& XILINX > ALL PROGRAMMABLE.

¢
Coding for Proper DSP and Arithmetic Inference

» The DSP blocks can perform many different function
— Multiplication, Addition and subtraction, Comparators, Counters, General logic

— Fully pipeline the code intended to map into the DSP48

» DSP48E1 slice registers contain only resets, and not sets
— Avoid asynchronous resets, since the DSP slice only supports synchronous reset
operations
» The DSP48E1 blocks use a signed arithmetic implementation

— Code using signed values in the HDL source to best match the resource
capabilities

— The bit precision for signed data is 18 bits by 25 bits

— The bit precision for unsigned data is 17 bits by 24 bits

» For Verilog code, data is considered unsigned unless otherwise declared
in the code

& XILINX > ALL PROGRAMMABLE.

. PR
Coding Shift Registers and Delay Lines

> Xilinx FPGA devices contain dedicated SRL16 and SRL32 resources
(integrated in LUTSs)

» To obtain the best performance when using SRLs

— Implement the last stage of the shift register in the dedicated Slice register
e The Slice registers have a better clock-to-out time than SRLs

e Synthesis tools often automatically infer this register====,
\

— You should not code set/reset \
\
— Use the HDL coding styles represented in the Vivado Des\‘gn Suite HDL
\
Templates \ Synthesis
"V Settings
-shreg min_size 3
sRLie | |P ©
JAN

& XILINX > ALL PROGRAMMABLE.

¢
Initialization of All Inferred Registers, SRLs, and Memories

» Xilinx highly recommends that you initialize all synchronous elements
accordingly

— Initialization of registers is completely inferable by all major FPGA synthesis tools

— This lessens the need to add a reset for the sole purpose of initialization

VHDL
(

\
signal regl : std_logic := 0@°;
signal reg2 : std_logic := 1°;
signal reg3 : std logic _vector(3 downto 0):=“1011";
\ J

4)
reg regl = 1°bo;
reg reg2 = 1°bl;
\reg [3:0] reg3 = 4°bl1011;

.

& XILINX » ALL PROGRAMMABLE.

N >
Constraints and Attributes

» What are constraints and attributes?
— ATTRIBUTEs are directives that are provided in the HDL code itself
— CONSTRAINTSs are provided in a constraints file (XDC)

» Both attributes and constraints provide guidance to specific tools on
how to interpret and implement certain signals or instances

> Several properties can be provided as an attribute inthe HDL or as a
constraint in the XDC

» Accordingly, in the context of those properties, attributes and
constraints are used interchangeably

& XILINX > ALL PROGRAMMABLE.

N >
Constraints and Attributes

» Xilinx recommends the following
— Embed directives that impact functionality as an attribute in the HDL code

— Put temporary constraints (such as those required for debugging) in a separate
constraints file

— Remove any LOC, RLOC, or BEL constraints, or other physical constraints,
embedded in the code or netlist of an existing design before retargeting to a new
design or device

& XILINX > ALL PROGRAMMABLE.

P > o
More Info

> Ug949: UltraFast Design Methodology Guide for the Vivado
Design Suite, chapter 4

» Ug473: 7 Series FPGAs Memory Resources
» Ug479: 7 Series DSP48E1l Slice
»Ug901: Vivado Design Suite User Guide Synthesis

& XILINX » ALL PROGRAMMABLE.

