
Vivado从此开始（To Learn Vivado From Here）







本书围绕Vivado四大主题









作者：高亚军（

•

•

•

•

Lauren Gao

UltraFast Design: Timing Constraint

Defining Timing Constraints in Four Steps

Create Clocks

Primary
Generated
Uncertainty

create_clock
create_generated_clock
set_sytem_jitter
set_input_jitter
set_clock_uncertainty
set_clock_latency

Reports

Clock Networks
Check Timing

set_input_delay
set_output_delay

set_clock_groups
set_false_path

set_false_path
set_min/max_delay
set_multicycle_path
set_case_analysis
set_disable_timing

I/O Delay

System
Source SYN

Clock Groups
CDC

ASYN
Exclusive

Timing Exce.

Ignore
Max/min

Reports

Check Timing
Report Timing

Reports

Clock Interaction
Check Timing

Reports

Timing Summary
Report Timing

1

2

3

4

Create clocks and define clock interactions

– Four-step guideline

Set input and output delays

– Beware of creating incorrect HOLD violations

Set timing exceptions

– Less is more!

– Beware of creating incorrect HOLD violations

Use report commands to validate each step

Method to Create Good Constraints

Page 4

For SDC-based timers, clocks only exist if you create them

– Use create_clock for primary clocks

Clocks propagate automatically through clocking modules

– MMCM and PLL output clocks are automatically generated

– Gigabit transceivers are not supported. Create them manually.

Use create_generated_clock for internal clocks (if needed)

All inter-clock paths are evaluated by default

Clock Ground Rules

Page 5

don’t

create_clock here
create_clock

here

Four Steps for Creating Clocks

Attributes
P: Propagated
G: Generated

Clock Period Waveform Attributes Sources
sys_clk 10.000 {0.000 5.000} P {sys_clk}
pll0/clkfbout 10.000 {0.000 5.000} P,G {pll0/plle2_adv_inst/CLKFBOUT}
pll0/clkout0 2.500 {0.000 1.250} P,G {pll0/plle2_adv_inst/CLKOUT0}
pll0/clkout1 10.000 {0.000 5.000} P,G {pll0/plle2_adv_inst/CLKOUT1}

Page 6

Step 1

– Use create_clock for all primary clocks on top level ports

– Run the design (synthesis) or open netlist design

Step 2

– Run report_clocks

– Study the report to verify period, phase and propagation

– Apply corrections to your constraints (if needed)

Step 3

– Evaluate the clock interaction using report_clock_interaction

BEWARE: All inter-clock paths are constrained by default!

– Mark inter-clock paths (Clock Domain Crossing) as asynchronous

• Make sure you designed proper CDC synchronizers

• Use set_clock_groups (preferred method to set_false_path)

BEWARE: This overrides any set_max_delay constraints!

– Do you have unconstrained objects?

• Find out with check_timing

Step 4

– Run report_clock_networks

– You want the design to have clean clock lines without logic

• Tip: Use clock gating option in synthesis to remove LUTs on the clock line

Four Steps for Creating Clocks (continued)

Page 7

What is the Primary Clock

Primary Clock

Jitter

– Input jitter: set_input_jitter

– System jitter: set_system_jitter

Additional uncertainty

– set_clock_uncertainty

– Add extra margin the timing paths of a clock or between two clocks

– This is also the best and safest way to over-constrain a portion of a design

without modifying the actual clock edges and the overall clocks relationships

Adjusting Clock Characteristics

Constraints Validation

Constraints Creation

Constraints Validation

Check if there are endpoints that are missing a constraint

check_timing

check_timing –override_defaults no_clock

Determine the source of missing clocks

check_timing

report_clock_networks

Validate clock characteristics

report_clocks

report_property [get_clocks wbClk]

System Level Perspective

– The I/O paths are modeled like any other reg-to-reg paths by the Vivado Design

Suite timing engine, except that part of the path is located outside the FPGA

device and needs to be described by the user

Constraining Input and Output Ports

Use a limited number of timing exceptions and keep them simple

whenever possible

– The runtime of the compilation flow will significantly increase when many

exceptions are used, especially when they are attached to a large number of

netlist objects

The more specific the constraint, the higher the priority

Timing Exceptions Guidelines

set_false_path -from [get_ports din] -to [all_registers]

set_false_path -from [get_ports din]

set_false_path -from [get_ports din] -to [get_cells blockA/config_reg[*]]

set_max_delay -from [get_clocks clkA] -to [get_pins inst0/D] 12

set_max_delay -from [get_clocks clkA] -to [get_clocks clkB] 10

Win

You have a design with two clocks coming on ports called wbClk and bftClk

– wbClk is a 100MHz clock, with 150 ps of jitter and a 60/40 duty cycle

– within the wbClk clock domain, setup clock uncertainty 213 ps

– bftClk is a 200MHz clock, with 30 ps of jitter and a 50/50 duty cycle

– The falling edge of bftClk is aligned with the rising edge of wbClk

– The design was designed to handle all CDC paths correctly. Assume that all CDC paths

derived from the two primary clocks can be ignored

Example

Example Solutions

create_clock -name wbClk -period 10.0 -waveform {0.0 6.0} [get_ports wbClk]

set_input_jitter wbClk 0.15

set_clock_uncertainty -setup 0.213 [get_clocks wbClk]

create_clock -name bftClk -period 5.0 -waveform {2.5 5} [get_ports bftClk]

set_input_jitter bftClk 0.03

set_clock_groups -async -name my_async_clks -group wbClk -group bftClk

Example : Clock Validation

 Validate both clocks are defined successfully

• report_clocks

 Validate input jitter is defined successfully

• report_property [get_clocks wbClk]

• get_property INPUT_JITTER [get_clocks wbClk]

Example : Clock Validation

 Validate clock uncertainty is defined successfully

• report_timing -from [get_clocks wbClk] -to [get_clocks wbClk]

Example : Clock Validation

 Validate both clocks are asynchronous

• report_clock_interaction

