Vivado从此开始(To Learn Vivado From Here)

本书围绕Vivado四大主题

- 设计流程
- 时序约束
- 时序分析
- Tcl脚本的使用

作者: 高亚军 (Xilinx战略应用高级工程师)

- 2012年2月,出版《基于FPGA的数字信号处理(第1版)》
- 2012年9月,发布网络视频课程《Vivado入门与提高》
- 2015年7月,出版《基于FPGA的数字信号处理(第2版)》
- 2016年7月,发布网络视频课程《跟Xilinx SAE学HLS》

◆ 内容翔实全面: 涵盖Vivado所有基本功能

◆ 讲解深入浅出:结合大量案例,帮助读者加强对基本概念的理解
◆ 描述图文并茂:给出具体操作步骤,易于快速动手实践

XILINX > ALL PROGRAMMABLE...

ALL PROGRAMMABLE

UltraFast Design: Timing Constraint

Lauren Gao

Defining Timing Constraints in Four Steps

XILINX > ALL PROGRAMMABLE.

Method to Create Good Constraints

Create clocks and define clock interactions

- Four-step guideline
- > Set input and output delays
 - Beware of creating incorrect HOLD violations

> Set timing exceptions

- Less is more!
- Beware of creating incorrect HOLD violations
- > Use report commands to validate each step

Clock Ground Rules

> For SDC-based timers, clocks only exist if you create them

- Use create_clock for primary clocks
- > Clocks propagate <u>automatically</u> through clocking modules
 - MMCM and PLL output clocks are automatically generated
 - Gigabit transceivers are not supported. Create them manually.

> Use create_generated_clock for internal clocks (if needed)
> All inter-clock paths are evaluated by default

Four Steps for Creating Clocks

> Step 1

- Use create_clock for all primary clocks on top level ports
- Run the design (synthesis) or open netlist design

> Step 2

- Run report_clocks
- Study the report to verify period, phase and propagation
- Apply corrections to your constraints (if needed)

Attributes P: Propagated G: Generated						
Clock	Period	Waveform	Attributes	Sources		
sys_clk	10.000	{0.000 5.000}	Р	{sys_clk}		
pll0/clkfbout	10.000	{0.000 5.000}	P,G	<pre>{pll0/plle2_adv_inst/CLKFBOUT}</pre>		
pll0/clkout0	2.500	{0.000 1.250}	P,G	<pre>{pll0/plle2_adv_inst/CLKOUT0}</pre>		
pll0/clkout1	10.000	{0.000 5.000}	P,G	<pre>{pll0/plle2_adv_inst/CLKOUT1}</pre>		

Four Steps for Creating Clocks (continued)

> Step 3

- Evaluate the clock interaction using report_clock_interaction
 BEWARE: All inter-clock paths are constrained by default!
- Mark inter-clock paths (Clock Domain Crossing) as asynchronous
 - Make sure you designed proper CDC synchronizers
 - Use set_clock_groups (preferred method to set_false_path)
 BEWARE: This overrides any set_max_delay constraints!
- Do you have unconstrained objects?
 - Find out with check_timing
- Step 4
 - Run report_clock_networks
 - You want the design to have clean clock lines without logic
 - Tip: Use clock gating option in synthesis to remove LUTs on the clock line

What is the Primary Clock

XILINX > ALL PROGRAMMABLE...

Adjusting Clock Characteristics

Jitter

- Input jitter: set_input_jitter
- System jitter: set_system_jitter
- > Additional uncertainty
 - set_clock_uncertainty
 - Add extra margin the timing paths of a clock or between two clocks
 - This is also the best and safest way to over-constrain a portion of a design without modifying the actual clock edges and the overall clocks relationships

Constraints Validation

Check if there are endpoints that are missing a constraint check_timing check_timing -override_defaults no_clock # Determine the source of missing clocks check_timing report_clock_networks # Validate clock characteristics report_clocks report_clocks report_property [get_clocks wbClk]

Constraining Input and Output Ports

> System Level Perspective

 The I/O paths are modeled like any other reg-to-reg paths by the Vivado Design Suite timing engine, except that part of the path is located outside the FPGA device and needs to be described by the user

Timing Exceptions Guidelines

- Use a limited number of timing exceptions and keep them simple whenever possible
 - The runtime of the compilation flow will significantly increase when many exceptions are used, especially when they are attached to a large number of netlist objects

NOT Recommended set_false_path -from [get_ports din] set_false_path -from [get_ports din] set_false_path -from [get_ports din] -to [get_cells blockA/config_reg[*]]

> The more specific the constraint, the higher the priority

set_max_delay -from [get_clocks clkA] -to [get_pins inst0/D] 12 Win
set_max_delay -from [get_clocks clkA] -to [get_clocks clkB] 10

Example

> You have a design with two clocks coming on ports called wbClk and bftClk

- wbClk is a 100MHz clock, with 150 ps of jitter and a 60/40 duty cycle
- within the wbClk clock domain, setup clock uncertainty 213 ps
- bftClk is a 200MHz clock, with 30 ps of jitter and a 50/50 duty cycle
- The falling edge of bftClk is aligned with the rising edge of wbClk
- The design was designed to handle all CDC paths correctly. Assume that all CDC paths derived from the two primary clocks can be ignored

Example Solutions

Solutions

```
create_clock -name wbClk -period 10.0 -waveform {0.0 6.0} [get_ports wbClk]
set_input_jitter wbClk 0.15
set_clock_uncertainty -setup 0.213 [get_clocks wbClk]
create_clock -name bftClk -period 5.0 -waveform {2.5 5} [get_ports bftClk]
set_input_jitter bftClk 0.03
set_clock_groups -async -name my_async_clks -group wbClk -group bftClk
```


Example : Clock Validation

- Validate both clocks are defined successfully
 - report_clocks
- Validate input jitter is defined successfully
 - report_property [get_clocks wbClk]
 - get_property INPUT_JITTER [get_clocks wbClk]

Attribu P: Pr G: Ge	ites opagated inerated					
V: Virtual I: Inverted						
Clock	Period	Waveform	Attributes	Sources		
wbClk	10.00000	{0.00000 6.00000}	P	{wbClk}		
bftClk	5.00000	{2.50000 5.00000}	P	{bftClk}		

Property	Type	Read-only	Value	
CLASS	string	true	clock	
INPUT_JITTER	double	true	0.150	
IS_GENERATED	bool true		0	
IS_PROPAGATED	bool	true	1	
IS_USER_GENERATED	bool	true	0	
IS_VIRTUAL	bool	true	0	
NAME	string	true	wbClk	
PERIOD	double	true	10.000	
SOURCE_PINS	string*	true	wbClk	
SYSTEM_JITTER	double	true	0.050	
WAVEFORM	double*	true	0.000 6.000	

Example : Clock Validation

- Validate clock uncertainty is defined successfully
 - report_timing -from [get_clocks wbClk] -to [get_clocks wbClk]

Slack (MET) :	7.116ns (required time - arrival time)
Source:	egressLoop[0].egressFifo/buffer_fifo/infer_fifo.block_ram_performance.fifo_ram_reg/CLKBWRCLK
	(rising edge-triggered cell RAMB36E1 clocked by wbClk {rise@0.000ns fall@6.000ns period=10.000ns})
Destination:	wbOutputData_reg[0]/D
	(rising edge-triggered cell FDRE clocked by wbClk {rise@0.000ns fall@6.000ns period=10.000ns})
Path Group:	wbClk
Path Type:	Setup (Max at Slow Process Corner)
Requirement:	10.000ns (wbClk rise@10.000ns - wbClk rise@0.000ns)
Data Path Delay:	2.622ns (logic 1.886ns (71.940%) route 0.736ns (28.060%))
Logic Levels:	2 (LUT6=2)
Clock Path Skew:	-0.023ns (DCD - SCD + CPR)
Destination Clock De	lay (DCD): 1.629ns = (11.629 - 10.000)
Source Clock Delay	(SCD): 1.760ns
Clock Pessimism Remo	val (CPR): 0.108ns
Clock Uncertainty:	0.296ns ((ISJ ² + IIJ ²) ¹ /2 + DJ) / 2 + PE + UU
Iotal System Jitter	(ISJ): 0.071ns
Iotal Input Jitter	(TIJ): 0.150ns
Discrete Jitter	(DJ): 0.000ns
Phase Error	(PE): 0.000ms
User Uncertainty	(W): 0.213ns

Example : Clock Validation

Validate both clocks are asynchronous

report_clock_interaction

From Clock	To Clock	WINS Clock Edges	WITS	INS	INS Failing Endpoints	INS Total Endpoints	WINS Path Requirement	Common Primary Clock	Inter-Clock Constraints
bftClk	bftClk	rise - rise	0.22	0.00	0	7705	5.00	Tes	Timed
bftClk	wbClk				0	33		No	Asynchronous Groups
wbClk	bftClk				0	440		No	Asynchronous Groups
wbClk	wbClk	rise - rise	7.33	0.00	U	1803	10.00	Ies	limed

