
Vivado从此开始（To Learn Vivado From Here）







本书围绕Vivado四大主题









作者：高亚军（

•

•

•

•



Lauren Gao

Defining Clock Groups



Synchronous

– Two clocks have a fixed phase relationship

• They share common circuitry (common node)

• They share the same primary clock (same initial phase)

Asynchronous

– Two clocks do not have a fixed phase relationship

• They do not share any common circuitry in the design and do not have a common 

primary clock

• They do not have a common period within 1000 cycles (unexpandable) and the timing 

engine cannot properly time them together

Exclusive

– Two clocks propagate on a same clock tree and reach the same sequential cell 

clock pins but cannot physically be active at the same time

– Logically exclusive

• Two clocks are defined on different source roots

– Physically exclusive

• Two clocks are defined on the same source root by "create_clock -add"

Clock Interactions



Clock Interactions Examples

MMCM

clk0

clk1

clk2

OSC1 Synchronous

MMCM

clka

clkb

clkc

OSC2 Asynchronous

clkt

clkv

BUFGMUX

Logic
Exclusive



set_clock_groups [-name arg] [-logically_exclusive]

[-physically_exclusive] [-asynchronous] [-group args] [-quiet]

[-verbose]

Use set_clock_groups to create clock exception constraint

– set_clock_groups –asynchronous

– set_clock_groups –logically_exclusive

– set_clock_groups –physically_exclusive

Clock Group Constraint Types



Use set_clock_groups –asynchronous to efficiently constrain such 

clocks

Asynchronous Clock Groups

create_clock –name CLKA –period 10.0 [get_ports CLKA] 
create_clock –name CLKB –period 5.0 [get_ports CLKB]
set_clock_groups –async –group CLKA –group CLKB

set_false_path –from [get_clocks CLKA] –to [get_clocks CLKB]
set_false_path –from [get_clocks CLKB] –to [get_clocks CLKA]

 CLKA,CLKB can be from 

different ports

 Or different MMCM 



Asynchronous Clock Groups

MMCM

clk0

clk1

clk2

CLKA

MMCM

clka

clkb

clkc

CLKB

Primary 
Clocks

Auto
Generated 

Clocks
Async Clocks

create_clock –name CLKA –period 10.0 [get_ports CLKA] 
create_clock –name CLKB –period 5.0 [get_ports CLKB]
set_clock_groups –async \
-group [get_clocks –include_generated_clocks CLKA] \
-group [get_clocks –include_generated_clocks CLKB]

BEWARE: This 

overrides any 

set_max_delay
constraints!



Example:

– The clocks clk50 and clk100 are synchronous to each other

– The clocks clk33 and clk66 are synchronous to each other

– The clocks clk50 and clk100 are asynchronous to the clocks clk33 and 

clk66

The constraint for the clock groups would be:

Asynchronous Clock Groups

set_clock_groups –async \
–group {clk50 clk100} -group {clk33 clk66}



In the below figure

– The clocks CLK1 and DIV_CLK1 are synchronous to each other

– The clocks CLK1 and DIV_CLK1 are asynchronous to CLKB

Solution

Asynchronous Clock Groups

create_generated_clock -name DIV_CLK1 –source \
[get_pins REGA1/C] -divide_by 2 [get_pins REGA1/Q]
set_clock_groups –async –group {CLK1 DIV_CLK1} –group {CLKB}

REGA1



Guideline

– Logically exclusive clocks shouldn’t interact outside the MUX

– Logically exclusive clocks are defined on different source roots

Logically Exclusive Clock Groups



Case in which the paths A, B, and C do not exist

Logically Exclusive Clock Groups

set_clock_groups –logically_exclusive -group clk0 –group clk1



Case in which only

the paths A or B or C exist

Logically Exclusive Clock Groups

create_generated_clock -name clk0mux -divide_by 1 \
-source [get_pins mux/I0] [get_pins mux/O]
create_generated_clock -name clk1mux -divide_by 1 \
-add -master_clock clk1 -source [get_pins mux/I1] [get_pins mux/O]
set_clock_groups -physically_exclusive \
-group clk0mux -group clk1mux



Guideline

– Physically clocks cannot physically exist at the same time

– Physically clocks are defined on the same source root

Physically Exclusive Clock Groups



The FPGA you are implementing must go on two different versions of 

PCB boards. To ease the FPGA version management, the requirement is 

to have a single bitfile for both boards. The only difference between the 

boards is that the wbClk has a different frequency depending on the 

configuration:

Configuration A:

– wbClk is a 100MHz clock

– bftClk is a 200MHz clock

– All CDCs between these clock domains can be treated as asynchronous

Configuration B:

– wbClk is a 150MHz clock

– bftClk is a 200MHz clock

– All CDCs between these clock domains can be treated as asynchronous

Physically Exclusive Clock Groups



Solutions

create_clock -name wbClk_A -period 10.0 [get_ports wbClk]
create_clock -name wbClk_B -period 6.667 [get_ports wbClk] -add
create_clock -name bftClk -period 5.0 [get_ports bftClk]
set_clock_groups -physically_exclusive -name two_clk_grps \
-group wbClk_A -group wbClk_B
set_clock_groups -async -name my_async_clks \
-group [get_clocks “wbClk_A wbClk_B”] -group bftClk



Say you have 10 clocks in your design (clk1, clk2, …, clk10)

– Let us assume that clocks clk1, clk2 and clk3 are synchronous and you create the 

following constraint

– set_clock_groups –async –group {clk1 clk2 clk3}

– The clocks clk1, clk2 and clk3 are synchronous with each other but are 

asynchronous to all other clocks in the design

– The other clocks (clocks clk4, clk5…) are analyzed as synchronous to each other

The above constraint is the same as

– set_clock_groups –async –group {clk1 clk2 clk3} –group {clk4 

clk5 ...clk10}

User generated clocks are not automatically grouped in the same group 

as the master!

– In the above example if clk1_gen is a user generated clock of clk1 they you'd need 

to add the clk1_gen to the same group as clk1

– set_clock_groups -async -group {clk1 clk1_gen clk2 clk3}

Things to Keep in Mind…


