. > o
VivadoMIEFFIS (To Learn Vivado From Here)

\\ D VB JJ& T)’Ll"‘/)lhﬁ
; v
IR gi Jj ﬁ
yiiae i om Here \ i’,
N, Tcl i A vy 4 A

£&: BEE (Xilinx& # M F 8%k TEIF)
20124E2 1, WK Gt TFPCAM B FZR S4# (F1K))
201249 H, AAWMERAMKRE (VivadoA 15 #E &)
201546 7H, WK (G TFPCAR K FRESAHE (F2M))
20164 7TH, KA W& KRRE (HXilinx SAEFHLS)

WAL AT: ¥ Vivadofr g AT
ﬁ%ﬁk&&:ﬁAk%%W 5 Bl A R %t SR AR A AR
WMAE IR SHEREETR, ZTHEFTFLE

& XILINX > ALL PROGRAMMABLE.

& XILINX

ALL PROGRAMMABLE-

Understanding Implementation Strategies

Lauren Gao

Implementation

opt_design
power_opt_design
place_design
power_opt_design
phys_opt_design

route_design

phys_opt_design

& XILINX » ALL PROGRAMMABLE.

. PR
Logic Optimization (opt_design)

> Retargeting
e Example: A MUXF7 replaced by a LUT3 can be combined with other LUTs
e Example: Simple cells such as inverters are absorbed into downstream logic
» Constant Propagation
— Eliminated logic
e Example: an AND with a constant o input

— Reduced logic
e Example: A 3-input AND with a constant 1 input is reduced to a 2-input AND

— Redundant logic

e Example: A 2-input OR with a logic o input is reduced to a wire

> Sweep

— Removes cells that have no loads

> Block RAM Power Optimization
— Changing the WRITE_MODE on unread ports of true dual-port RAMs to NO_CHANGE
— Applying intelligent clock gating to block RAM outputs

& XILINX > ALL PROGRAMMABLE.

. PR
Logic Optimization (opt_design)

> Remap
— Remap combines multiple LUTs into a single LUT to reduce the depth of the logic

» Resynth Area
— Resynth Area performs re-synthesis in area mode to reduce the number of LUTs.

» Resynth Sequential Area
— Resynth Sequential Area performs re-synthesis to reduce both combinational and
sequential logic

& XILINX > ALL PROGRAMMABLE.

opt_design

opt_design [-retarget] [-propconst] [-sweep] [-bram_power_opt]
[-remap] [-resynth_area] [-resynth_seq_area] [-directive <arg>]
[-quiet] [-verbose]

Opt Design (opt_design)

is_enabled
tcl. pre
tcl. post
-verbose [0
Cdirective __[[YTE =)
More Options Explore
ExploreArea
ExploreSequentialArea
AddRemap
RuntimeOptimized
NoBramPowerOpt
e ———

opt_design -directive NoBramPowerOpt
opt_design -retarget -propconst -sweep

& XILINX > ALL PROGRAMMABLE.

Power Optimization

» Optimize dynamic power using clock gating but do not change the
clocks or logic of the design

> It can be run AFTER LOGIC OPTIMIZATION or after placement

Before Y \ \ After
: FXL) //-j;o;er\ ~N
sig LI LLIm1 Consumption s.gLn kl CO[,]-,EHE([,]M \

00000 TN
& \ \ g\ s —-g
\\
Before Aftor
m’ address
WO |
NBG dataout . data in UUUU g
\ 2
\\
data in
C 100000] fmpce

& XILINX » ALL PROGRAMMABLE.

. PR
power_opt _design

e power_opt_design [-quiet] [-verbose]
e set_power_opt [-include_cells <args>] [-exclude_cells <args>]

[-clocks <args>] [-cell_types <args>] [-quiet] [-verbose]

set _power opt -cell types {bram reg}
power _opt design

& XILINX » ALL PROGRAMMABLE.

. PR
Place Design (place _design)

Directive Designs Benefitted
BlockPlacement Designs with many block RAM, DSP blocks, or both
ExtraNetDelay Designs that anticipate many long-distance net
connections and nets that fan out to many different
modules

SpreadLogic Designs with very high connectivity that tend to create
congestion

ExtraPostPlacementOpt All design types

SSI SSI designs that might benefit from different styles of
partitioning to relieve congestion or improve timing.

& XILINX » ALL PROGRAMMABLE.

e AR
Place Design Directives

Wire Length Extra Net Delay

WLDrivenBlockPlacement
AltWLDrivenPlacement

ExtraNetDelay_high
ExtraNetDelay_medium

I I
(UltraScale Only) ExtraNetDelay_low

LateBlockPlacement

Spread Logic SSI

SSI_ExtraTimingOpt
SpreadLogic_high SSI_SpreadSLLs

SpreadLogic_medium

SSI_BalanceSLLs
SSI_BalanceSLRs
SSI_HighUtilSLRs

SpreadLogic_low

& XILINX » ALL PROGRAMMABLE.

. PR
place design

place_design [-directive <arg>] [-no_timing_driven] [-timing_summary]

[-unplace] [-post_place_opt] [-quiet] [-verbose]

» -unplace:
— Unplace all the instances which are not locked by constraints
» -post_place_opt

— Run optimization after placement to improve critical path timing at the expense
of additional placement and routing runtime

— This optimization can be run at any stage after placement, and can be
particularly effective on a routed design

— Any placement changes will result in unrouted connections, so route_design will
need to be run after -post_place_opt

& XILINX > ALL PROGRAMMABLE.

place design

proc runPPO { {numIters 1} {enablePhysOpt 1} } {
for {set i 0} {$i < $numIters} {incr i} {
place_design -post place opt
if {$enablePhysOpt != 0} {
phys opt design
}

route design
if {[get property SLACK [get timing paths]] >= @} {break};
#stop if timing is met
}
}

Place Design (place_design)

place design

tcl. pre

phys_opt_design @ve (Default J
route design More Ontians
runPPO 4 1

& XILINX > ALL PROGRAMMABLE.

. PR
Physical Optimization (phys_opt_design)

» Physical optimization performs timing-driven optimization on the
negative-slack paths of a design

» Two modes of operation
— post-place

— post-route

phys_opt_design [-fanout_opt] [-placement_opt] [-routing_opt] [-rewire]
[-critical_cell_opt] [-dsp_register_opt] [-bram_register_opt]
[-bram_enable_opt] [-shift_register_opt] [-hold_fix] [-retime]
[-force_replication_on_nets <args>] [-directive <arg>]

[-critical_pin_opt] [-clock_opt] [-quiet] [-verbose]

& XILINX > ALL PROGRAMMABLE.

Routing

» Router can start with a placed design that is
— Unrouted
— Partially routed
— Fully routed

route_design [-unroute] [-release_memory] [-nets <args>] [-physical_nets]
[-pin <arg>] [-directive <arg>] [-tns_cleanup][-no_timing_driven]
[-preserve] [-delay] [-auto_delay] -max_delay <arg> -min_delay <arg>

[-timing_summary] [-finalize] [-quiet] [-verbose]

& XILINX » ALL PROGRAMMABLE.

. PR
route_design

route_design

write checkpoint -force $outputDir/post route
report _timing summary -file \

$outputDir/post _route_timing summary.rpt

Get the nets in the top 10 critical paths, assign to $preRoutes
set preRoutes [get nets -of [get timing paths -max_paths 10]]

route $preRoutes first with the smallest possible delay
route_design -nets [get nets $preRoutes] -delay

preserve the routing for $preRoutes and continue with the rest
of the design

route_design -preserve

& XILINX » ALL PROGRAMMABLE.

. PR
route_design

get nets of the top 10 setup-critical paths

set preRoutes [get nets -of [get timing paths -max_paths 10]]

get nets of the top 10 hold-critical paths

lappend preRoutes [get nets -of \

[get _timing paths -hold -max_paths 10]]

route $preRoutes based on timing constraints

route_design -nets [get _nets $preRoutes] -auto delay

preserve the routing for $preRoutes and continue with the rest
of the design

route_design -preserve

route_design

Unroute all the nets in u@/ul, and route the critical nets
first

route_design -unroute [get nets u@/ul/*]

route_design -delay -nets [get nets $myCritNets]
route_design -preserve

& XILINX » ALL PROGRAMMABLE.

e AR
route_design

Command Function
report_route_status Reports route status for nets
report_timing Performs path endpoint analysis
e

& XILINX » ALL PROGRAMMABLE.

Implementation Strategies

opt_design
power_opt_design

place_design

power_opt_design

phys_opt_design
route_design

phys_opt_design

& XILINX » ALL PROGRAMMABLE.

e AR
Implementation Strategies

Congestion_SpreadLogic_high
Congestion_SpreadLogic_medium
Congestion_SpreadLogic_low
Congestion_SpreadLogicSLLs
Congestion_BalanceSLLs
Congestion_BalanceSLRs

Performance_Explore
Performance_ExplorePostRoutePhysOpt
Performance_RefinePlacement
Performance_WLBlockPlacement
Performance_WLBlockPlacementFanoutOpt

Performance_LateBlockPlacement
Performance_NetDelay_high
Performance_NetDelay_medium
Performance_NetDelay_low
Performance_ExploreSLLs
Performance_Retiming

Congestion_CompressSLRs

Flow_RunPhysOpt
Flow_RunPostRoutePhysOpt
Flow_RuntimeOptimized
Flow_Quick

Area_Explore User Defined Strategy Power_DefaultOpt

& XILINX > ALL PROGRAMMABLE.

e AR
Summary

» Implementation strategies are made of different design flows with its
different directive

» Directive is an important option in its corresponding design flow

» Choose proper implementation strategy according to your design
requirements instead of using default only

& XILINX » ALL PROGRAMMABLE.

