
Vivado从此开始（To Learn Vivado From Here）







本书围绕Vivado四大主题









作者：高亚军（

•

•

•

•

Lauren Gao

Understanding Implementation Strategies

Implementation

opt_design

place_design

power_opt_design

power_opt_design

phys_opt_design

route_design

phys_opt_design

Retargeting

• Example: A MUXF7 replaced by a LUT3 can be combined with other LUTs

• Example: Simple cells such as inverters are absorbed into downstream logic

Constant Propagation

– Eliminated logic

• Example: an AND with a constant 0 input

– Reduced logic

• Example: A 3-input AND with a constant 1 input is reduced to a 2-input AND

– Redundant logic

• Example: A 2-input OR with a logic 0 input is reduced to a wire

Sweep

– Removes cells that have no loads

Block RAM Power Optimization

– Changing the WRITE_MODE on unread ports of true dual-port RAMs to NO_CHANGE

– Applying intelligent clock gating to block RAM outputs

Remap

Logic Optimization (opt_design)

Remap

– Remap combines multiple LUTs into a single LUT to reduce the depth of the logic

Resynth Area

– Resynth Area performs re-synthesis in area mode to reduce the number of LUTs.

Resynth Sequential Area

– Resynth Sequential Area performs re-synthesis to reduce both combinational and

sequential logic

Logic Optimization (opt_design)

opt_design

opt_design -directive NoBramPowerOpt
opt_design -retarget -propconst -sweep

opt_design [-retarget] [-propconst] [-sweep] [-bram_power_opt]
[-remap] [-resynth_area] [-resynth_seq_area] [-directive <arg>]
[-quiet] [-verbose]

Optimize dynamic power using clock gating but do not change the

clocks or logic of the design

It can be run or after placement

Power Optimization

power_opt_design

 power_opt_design [-quiet] [-verbose]

 set_power_opt [-include_cells <args>] [-exclude_cells <args>]

[-clocks <args>] [-cell_types <args>] [-quiet] [-verbose]

set_power_opt -cell_types {bram reg}
power_opt_design

Place Design (place_design)

Place Design Directives

WLDrivenBlockPlacement
AltWLDrivenPlacement
(UltraScale Only)
LateBlockPlacement

ExtraNetDelay_high
ExtraNetDelay_medium
ExtraNetDelay_low

SpreadLogic_high
SpreadLogic_medium
SpreadLogic_low

SSI_ExtraTimingOpt
SSI_SpreadSLLs
SSI_BalanceSLLs
SSI_BalanceSLRs
SSI_HighUtilSLRs

Wire Length Extra Net Delay

Spread Logic SSI

-unplace:

– Unplace all the instances which are not locked by constraints

-post_place_opt

– Run optimization after placement to improve critical path timing at the expense

of additional placement and routing runtime

– This optimization can be run at any stage after placement, and can be

particularly effective on a routed design

– Any placement changes will result in unrouted connections, so route_design will

need to be run after -post_place_opt

place_design

place_design [-directive <arg>] [-no_timing_driven] [-timing_summary]

[-unplace] [-post_place_opt] [-quiet] [-verbose]

place_design

proc runPPO { {numIters 1} {enablePhysOpt 1} } {
for {set i 0} {$i < $numIters} {incr i} {
place_design -post_place_opt
if {$enablePhysOpt != 0} {
phys_opt_design

}
route_design
if {[get_property SLACK [get_timing_paths]] >= 0} {break};

#stop if timing is met
}

}

place_design
phys_opt_design
route_design
runPPO 4 1

Physical optimization performs timing-driven optimization on the

negative-slack paths of a design

Two modes of operation

– post-place

– post-route

Physical Optimization (phys_opt_design)

phys_opt_design [-fanout_opt] [-placement_opt] [-routing_opt] [-rewire]
[-critical_cell_opt] [-dsp_register_opt] [-bram_register_opt]
[-bram_enable_opt] [-shift_register_opt] [-hold_fix] [-retime]
[-force_replication_on_nets <args>] [-directive <arg>]
[-critical_pin_opt] [-clock_opt] [-quiet] [-verbose]

Router can start with a placed design that is

– Unrouted

– Partially routed

– Fully routed

Routing

route_design [-unroute] [-release_memory] [-nets <args>] [-physical_nets]

[-pin <arg>] [-directive <arg>] [-tns_cleanup][-no_timing_driven]

[-preserve] [-delay] [-auto_delay] -max_delay <arg> -min_delay <arg>

[-timing_summary] [-finalize] [-quiet] [-verbose]

route_design

route_design
write_checkpoint -force $outputDir/post_route
report_timing_summary –file \
$outputDir/post_route_timing_summary.rpt

Get the nets in the top 10 critical paths, assign to $preRoutes
set preRoutes [get_nets -of [get_timing_paths -max_paths 10]]
route $preRoutes first with the smallest possible delay
route_design -nets [get_nets $preRoutes] -delay
preserve the routing for $preRoutes and continue with the rest
of the design
route_design -preserve

route_design

get nets of the top 10 setup-critical paths
set preRoutes [get_nets -of [get_timing_paths -max_paths 10]]
get nets of the top 10 hold-critical paths
lappend preRoutes [get_nets -of \
[get_timing_paths -hold -max_paths 10]]
route $preRoutes based on timing constraints
route_design -nets [get_nets $preRoutes] -auto_delay
preserve the routing for $preRoutes and continue with the rest
of the design
route_design -preserve

route_design
Unroute all the nets in u0/u1, and route the critical nets
first
route_design -unroute [get_nets u0/u1/*]
route_design -delay -nets [get_nets $myCritNets]
route_design -preserve

route_design

Implementation Strategies

opt_design

place_design

power_opt_design

power_opt_design

phys_opt_design

route_design

phys_opt_design

directive Strategy+

Implementation Strategies

Performance_Explore
Performance_ExplorePostRoutePhysOpt
Performance_RefinePlacement
Performance_WLBlockPlacement
Performance_WLBlockPlacementFanoutOpt
Performance_LateBlockPlacement
Performance_NetDelay_high
Performance_NetDelay_medium
Performance_NetDelay_low
Performance_ExploreSLLs
Performance_Retiming

Congestion_SpreadLogic_high
Congestion_SpreadLogic_medium
Congestion_SpreadLogic_low
Congestion_SpreadLogicSLLs
Congestion_BalanceSLLs
Congestion_BalanceSLRs
Congestion_CompressSLRs

Flow_RunPhysOpt
Flow_RunPostRoutePhysOpt
Flow_RuntimeOptimized
Flow_Quick

Area_Explore Power_DefaultOptDefaultUser Defined Strategy

Implementation strategies are made of different design flows with its

different directive

Directive is an important option in its corresponding design flow

Choose proper implementation strategy according to your design

requirements instead of using default only

Summary

