
Vivado从此开始（To Learn Vivado From Here）

本书围绕Vivado四大主题

作者：高亚军（

•

•

•

•

Lauren Gao

Timing Closure

Part 2

Vivado Baseline Timing Constraint

Timing Closure Tips

Agenda

Coding style is not independent,oppositely, it's highly related to device

architeture

Avoid asynchronous reset

Add pipeline register in the hierarchy boundary

Pipeline is very helpful to improve clock frequency

– RAM and DSP

Read and analyze timing report after synthesis

Tip 1: Good HDL Coding Style

A register can be mapped to one of several types of resources in

the device

– CLB register, CLB LUTRAM as an SRL

– ILOGIC, OLOGIC

– DSP and block RAMs

• If the register is adjacent to arithmetic or memory functionality

Sequential Logic: Registers

ILOGIC

CLB FF driven from LUT

CLB FF driven from X input

LUTRAM (as SRL)

CLB FF driven from MUXFX or CARRY

OLOGIC

CLB FF in Q BEL

CLB FF in MUX BEL

ILOGIC

OLOGIC

LUTRAM (as SRL)

DSP

BRAM

FASTER Clock to Out Delays

Setup Requirement

Ug949 > Ch5 > Timing Closure > Reviewing Technology Choices

Block RAM

– Dedicated hardware resources, higher capacity

– Smaller power consumption compared to distributed RAM of similar capacity

– Higher delay getting to and from the block RAM columns

Distributed RAM

– Implemented using CLB logic

– More suited to smaller capacity

Block RAM or Distributed RAM

8kx32

128x4

Ug949 > Ch5 > Timing Closure > Reviewing Technology Choices

Virtex-7 Speed Grade: -2

Fully
Pipelined

DSP48E1

– It is more suited to wide, high-speed multiplication

– Multiplier, MAC, Adder, Subtraction, Counters, Wide parallel logic gates

CLB carry logic

– It is usually more appropriate for KCM and small-width multipliers

CLB-logic based functions can be moved to DSP48E1 when

CLBs are over utilized

– The latter is useful for addressing areas of congestion

DSP48E1

Ug949 > Ch5 > Timing Closure > Reviewing Technology Choices

Over constrained

– Use more memory and runtime

– To overconstrain, uncertainty gets added directly to slack equation

• set_clock_uncertainty –setup 0.3 [get_clocks my_CLK]

• After phys_opt or after route:

set_clock_uncertainty –setup 0 [get_clocks my_CLK]

Under constrained

– Your design may close timing but exhibit hardware failures due to missing paths

All the clocks are contrained

– check_timing

– Analyze CDC path: report_clock_interaction

Tip 2: Make Your Constraints Precise and Proper

It's better to analyze timing without IO constraints

– Address internal timing issues firstly

– Vivado will not analyze IO timing if IO constraints are not avaliable

– If internal timing is closure, IO constraints can be set

– Use source/system synchronous timing constraints template

Timing exception: Less is more
– set_multicycle_path –from [get_cells regB] –to [get_cells regC] N –setup

– set_multicycle_path –from [get_cells regB] –to [get_cells regC] N-1 –hold

Tip 2: Make Your Constraints Precise and Proper

Recommended to drive high fanout nets from a synchronous start point

Identify high fanout nets driven by LUTs

– report_high_fanout_nets –load_types –max_nets 100

Tip 3: Manage High Fanout Nets

Verify bottom module by OOC, which can accerlate design iteration

– Design based on IP is buttom-up

– Each IP has its own DCP which can be resued in each iteration

Verison control: Git, Subversion, RCS

Hierarchy design methodology

Tip 4: Bottom to Up Design Flow

In SDC, ALL clocks are considered related by default

Check clock interaction report

– report_clock_interatcion

Create asynchronous clock group

– set_clock_groups

Check clock network report

– report_clock_networks

Check CDC report (2014.3 or later)

– report_cdc

Tip 5: Clock Domain Cross Design and Constraint

Synchronous clock domain cross path

– Both source and destination clocks are from the same MMCM/PLL

– The phase between source clock and destination clock is specific

– Constraint: set_multicycle_path

Asynchronous clock domain cross path

– Source clock and destination clock are from different MMCM/PLL

– The phase between them is not specific

– Design: dual-register; FIFO; Hand-shaking

– Add “ASYNC_REG” attribute to synchronizer

– Constraint: set_clock_groups; set_max_delay –datapath_only;

set_false_path

Tip 5: Clock Domain Cross Design and Constraint

Before PCB design, run DRC

– IO planning

– Clock planning

LOC for Macro

– Block RAM and DSP

Before floorplan, improving HDL and constraints are done firstly

– Floorplan: less is more

• Only for critical part

• Don't creat the pblocks with high resource utilization

• Avoid overlap pblocks

Tip 6: Physical Constraints

The same project can include multiple design runs with different

strategies

– Implementation strategy can cover different requirements: performance, power,

area, flow

– You can create your own strategy

You can add Hook Script in each design step

– Multiple iterations of phys_opt_design

Tip 7: Choose the Proper Strategy

Reduce control sets

– Check control sets report: report_control_sets

Combine the clocks with the same frequency

Integrate clock enable signals

Follow the principle of reset

– No reset is best

– Synchronous reset is better if reset is needed

– Avoid asynchronous reset

• BRAM and DSP don't support asynchronous reset

Tip 8: Share Control Set Signals

Address critical warnings and errors

Check DRC violations: After synthesis and Implementation

– Run methodology_checks and timing_checks

Understand timing report and violations

– Both data path and clock path should be analyzed

Check design analysis report

– Provides data on critical path characteristics and complexity of the design to help

identify and analyze problem areas that are subject to timing closure issues and

routing congestion

– report_design_analysis (2014.3 or later)

Tip 9: Understand Log And Report Files

Customize your own reports

Edit netlist

Insert Hook Script in each design stage

Tip 10: Bring Tcl into Full Play

Tip 1: Good HDL Coding Style

Tip 2: Make Your Constraints Precise and Proper

Tip 3: Manage High Fanout Nets

Tip 4: Bottom to Up Design Flow

Tip 5: Clock Domain Cross Design and Constraint

Tip 6: Physical Constraints

Tip 7: Choose the Proper Strategy

Tip 8: Share Control Set Signals

Tip 9: Understand Log And Report Files

Tip 10: Bring Tcl into Full Play

Summary

