
Vivado从此开始（To Learn Vivado From Here）

本书围绕Vivado四大主题

作者：高亚军（

•

•

•

•

Lauren Gao

Vivado Implementation

New Feature: Directive

Implementation Strategy

Run Implementation in Project-Mode and Non-Project Mode

Agenda

New Feature: Directive

Implementation Strategy

Run Implementation in Project-Mode and Non-Project Mode

Agenda

Vivado Implementation Sub-processes

opt_design

power_opt_design

place_design

route_design

write_bitstream

phys_opt_design

Logic Optimization

(Optional) Power Optimization

Placement

(Optional) Physical Synthesis

Routing

Generate a Bitstream

New Feature: Directive

directive

directive

Command option to “direct” behavior towrd

alternate goal

– Different algorithms

– Different objectives

Implementation commands with –directive

– opt_design, place_design, phys_opt_design,

route_design

Alternative flows to use

– When the default flow does not meet design goals

– When tool runtime increase can be accommodated

Uses different algorithms

– Not random seeds like ISE cost tables

– More consistent and predictable behavior

Help -opt_design to find all the directives

-directive Explore

All commands have –directive Explore

ISE MAP

ISE P&R

ISE –effort_level Vivado -directive

-effort_level high -directive Explore

-effort_level high -area_mode
-directive ExploreArea
(opt_design only)

-directive: Replacement for –effort_level

Automatic mapping for all implementation commands

ISE –effort_level Vivado -directive

-effort_level high

-effort_level medium

-effort_level low

-effort_level quick

-directive Explore

-directive Default

-directive RumtimeOptimized

-directive Quick

New Feature: Directive

Implementation Strategy

Run Implementation in Project-Mode and Non-Project Mode

Agenda

Implementation Strategy

Different

directives

Tools options Strategies

Strategies are grouped by category

– Performance, Area, Power, Flow, Congestion

Strategies Example

Design flow Performance_Explore Area_Explore Power_DefaultOpt Flow_RunPhysOpt Congestion_SpreadLogic_high

opt_design √ √ √ √ √

-directive Explore ExploreArea Default Default Default

power_opt_design × × √ × ×

place_design √ √ √ √ √

-directive Explore Default Default Default SpreadLogic_high

power_opt_design
(post-place)

× × × × ×

phys_opt_design √ × √ √ √

-directive Explore Default Explore AggressiveFanoutOpt

route_design √ √ √ √

-directive Explore Default Default Default MoreGlobalIterations

Directives -> command level behavior

Strategies -> implementation run-level behavior, a combination of

directives

Different strategy may have

– Different directives

• Vivado implementation default: -directive are all default

• Performance_Explore: -directive are all Explore

– Different design flows

• Vivado implementation default: opt_design, place_design , route_design

• Performance_Explore: opt_design, place_design, phys_opt_design, route_design

Each strategy has different directives for the impl command steps

You can customize your own strategy

– User defined strategies

The Performance_Explore strategy is a good first choice, because it

covers all types of designs

– The Performance strategies aim to improve design performance at the expense

of runtime

Strategies containing the terms SLL or SLR are for use with SSI devices

only

Implementation Strategy

Tcl API

Tcl API

Tcl API

All implementation sub-processes have Tcl API

– tcl.pre : commands should be executed before this process

– tcl.post: commands should be executed after this process

Example

– opt_design.tcl

New Feature: Directive

Implementation Strategy

Run Implementation in Project-Mode and Non-Project Mode

Agenda

In Project Mode, the Vivado IDE allows you to

– Define multiple implementation runs

– Run multiple strategies on a single design

– Customize implementation strategies to meet specific design requirements

– Save customized implementation strategies to use in other designs

Non-Project Mode does not support predefined implementation runs

and strategies

Run Implementation in Project Mode with GUI

launch_runs [-jobs arg] [-scripts_only] [-all_placement] [-dir arg]

[-to_step arg] [-next_step] [-host args] [-remote_cmd arg]

[-email_to args] [-email_all] [-pre_launch_script arg]

[-post_launch_script arg] [-force] [-quiet] [-verbose] runs...

to_step

– opt_design, power_opt_design, place_design, power_opt_design(post_place)

– Phys_opt_design, route_design, write_bitstream

• -to_step place_design

• -to_step "power_opt_design (Post-Place)"

Run Implementation in Project Mode with Tcl

 launch_runs impl_1
 launch_runs impl_2 -to_step place_design
cd {F:\Vivado\Tutorial\logic_sim\XSim_Tutorial.runs\impl_2}
open_checkpoint sinegen_demo_placed.dcp
launch_runs impl_2 -next_step

Run Implementation in Non-Project Mode

Non-project based designs must be manually moved through each step of

the implementation process using Tcl commands

place_design [-directive arg] [-no_timing_driven] [-unplace]

[-cells args] [-post_place_opt] [-quiet] [-verbose]

-post_place_opt

– Potentially improve critical path timing at the expense of additional runtime

– This optimization can be run at any stage after placement, and can be particularly

effective on a routed design

– The optimization examines the worst case timing paths and tries to improve

placement to reduce delay

– The optimization is performed on a fully placed design with timing violations

The -directive option controls the overall placement strategy, and is not

compatible with any specific place_design options.

place_design

place_design
phys_opt_design
route_design
place_design -post_place_opt
route_design

route_design [-unroute] [-re_entrant arg] [-nets args] [-physical_nets]

[-pin arg] [-directive arg] [-no_timing_driven] [-preserve] [-delay]

[-free_resource_mode] -max_delay arg -min_delay arg [-quiet] [-verbose]

-preserve

– Preserve existing routing

-delay

– Use with -nets or -pin option to route in delay driven mode

-max_delay

– Use with -pin option to specify the max_delay constraint on the pin

-min_delay

– Use with -pin option to specify the max_delay constraint on the pin

route_design

route_design -delay -nets $myCriticalNets
route_design -preserve -directive RuntimeOptimized
route_design -unroute

phys_opt_design [-fanout_opt] [-placement_opt] [-rewire]

[-critical_cell_opt] [-dsp_register_opt] [-bram_register_opt]

[-bram_enable_opt] [-shift_register_opt] [-hold_fix] [-retime]

[-force_replication_on_nets args] [-directive arg] [-critical_pin_opt]

[-quiet] [-verbose]

Command options limit the optimization scope to only the specified

options

– One option per optimization

phys_opt_design

Timing-driven optimizations included by default

– Fanout: replicate drivers of high fanout nets

– Placement: move cells

– Rewiring: restructure logic cones

– Critical cells: replicate critical path cells

– DSP registers: move registers to/from DSP

– BRAM registers: move registers to/from BRAM

– Shift registers: move registers from SRLs

– Critical pins: swap physical LUT input pins

– Very high fanout: replicate drivers of very-high fanout nets

– BRAM enable: improve power-optimized BRAM enables

Page 21

What Optimizations are Performed?

Optional optimizations

– Forced net replication: replicate regardless of timing slack

– Register retiming: balance registers across combinational delays

– Hold-fix: insert data path delay

Page 22

What Optimizations are Performed?

Different strategy may have different design flows with different

directives

Directive is incompatible with other options in opt_design,

place_design, phys_opt_design and route_design

Directives and strategies provide alternate flows to try when the tool

defaults don’t meet timing on difficult designs

Some Tcl command can help to meet timing

– place_design –post_place_opt

– phys_opt_design

– route_design –delay –nets

Performance_Explore is helpful for timing closure

Summary

