Vivado从此开始(To Learn Vivado From Here)

本书围绕Vivado四大主题

- 设计流程
- 时序约束
- 时序分析
- Tcl脚本的使用

作者: 高亚军 (Xilinx战略应用高级工程师)

- 2012年2月,出版《基于FPGA的数字信号处理(第1版)》
- 2012年9月,发布网络视频课程《Vivado入门与提高》
- 2015年7月,出版《基于FPGA的数字信号处理(第2版)》
- 2016年7月,发布网络视频课程《跟Xilinx SAE学HLS》

◆ 内容翔实全面: 涵盖Vivado所有基本功能

◆ 讲解深入浅出:结合大量案例,帮助读者加强对基本概念的理解
◆ 描述图文并茂:给出具体操作步骤,易于快速动手实践

XILINX > ALL PROGRAMMABLE...

ALL PROGRAMMABLE

Programming and Debugging

Lauren Gao

- > Changing Device Configuration Bitstream Settings
- > Using the Netlist Insertion Method for Debugging a Design in Vivado
- > Using the HDL Instantiation Method for Debugging a Design in Vivado
- Using a VIO Core for Debugging a Design in Vivado
- Using Tcl to Create Debug Unit
- Demo

> Changing Device Configuration Bitstream Settings

- > Using the Netlist Insertion Method for Debugging a Design in Vivado
- > Using the HDL Instantiation Method for Debugging a Design in Vivado
- Using a VIO Core for Debugging a Design in Vivado
- Using Tcl to Create Debug Unit
- Demo

Changing Device Configuration Bitstream Settings

ISE: Generate Programming File

\rightarrow Process Properties

ategory	Switch Name	Property Name	Value	
General Options Configuration Options Startup Options Readback Options Encryption Options	-g ConfigRate:	Configuration Rate	2	-
	-g CclkPin:	Configuration Clk (Configuration Pins)	Pull Up	-
	-g MOPin:	Configuration Pin M0	Pull Up	-
	-g M1Pin:	Configuration Pin M1	Pull Up	-
	-g M2Pin:	Configuration Pin M2	Pull Up	-
	-g ProgPin:	Configuration Pin Program	Pull Up	
	-g DonePin:	Configuration Pin Done	Pull Up	
	-g InitPin:	Configuration Pin Init	Pull Up	-
	-g CsPin:	Configuration Pin CS	Pull Up	
	-g DinPin:	Configuration Pin DIn	Pull Up	
	-g BusyPin:	Configuration Pin Busy	Pull Up	
	-g RdWrPin:	Configuration Pin RdWr	Pull Up	
	-g HswapenPin:	Configuration Pin HSWAPEN	Pull Up	
	-g TckPin:	JTAG Pin TCK	Pull Up	
	-g TdiPin:	JTAG Pin TDI	Pull Up	
	-g TdoPin:	JTAG Pin TDO	Pull Up	
	-g TmsPin:	JTAG Pin TMS	Pull Up	
	-g Disable_JTAG:	Disable JTAG Connection		
	-g UnusedPin:	Unused IOB Pins	Float	-
	-g UserID:	UserID Code (8 Digit Hexadecimal)	0xFFFFFFFF	
	-g DCIUpdateMode:	DCI Update Mode	As Requi	
	Property display lev	lay level: Advanced 💌 📝 Display switch names 🖉 Defaul		

> Vivado: top netlist \rightarrow Add property

23
=
-
Cancel

XILINX > ALL PROGRAMMABLE..

- > Changing Device Configuration Bitstream Settings
- > Using the Netlist Insertion Method for Debugging a Design in Vivado
- > Using the HDL Instantiation Method for Debugging a Design in Vivado
- > Using a VIO Core for Debugging a Design in Vivado
- Using Tcl to Create Debug Unit
- Demo

Vivado Debug Core

XILINX ➤ ALL PROGRAMMABLE...

Two Methods to Add Debug Core in the Design

Using the Netlist Insertion Method

Synthesizing the Design

Synthesis settings:

- -flatten_hierarchy
 - none
 - rebuilt

Probing and Adding Debug IP

- How to find target nets
 - ✓ In HDL source code
 - In Netlist view
 - In Schematic view

XILINX > ALL PROGRAMMABLE.

Marking HDL Signals for Debug (Pre-Synthesis)

> For an RTL netlist-based project

Vivado: VHDL/Verilog

attribute mark_debug : string; attribute mark_debug of char_fifo_dout: signal is "true";

(* mark_debug = "true" *) wire [7:0] char_fifo_dout;

Synplify: VHDL/Verilog

```
attribute syn_keep : boolean;
attribute mark_debug : string;
attribute syn_keep of char_fifo_dout: signal is true;
attribute mark_debug of char_fifo_dout: signal is "true";
```

```
(* syn_keep = "true", mark_debug = "true" *)
wire [7:0] char_fifo_dout;
```

Marking Nets for Debug in the Synthesized Design (Post-Synthesis)

> For a synthesized design (Open synthesized design firstly)

XILINX > ALL PROGRAMMABLE.

Using Tcl to Set mark_debug Attribute

> For a synthesized design (Open synthesized design firstly)

```
set_property mark_debug true [get_nets sine*]
```

Confirm get_nets as expected

You can use get_nets in conjunction with other get_* to find your target nets effectively

XII INX > ALL PROGRAMMABLE.

- > Changing Device Configuration Bitstream Settings
- > Using the Netlist Insertion Method for Debugging a Design in Vivado

> Using the HDL Instantiation Method for Debugging a Design in Vivado

- Using a VIO Core for Debugging a Design in Vivado
- Using Tcl to Create Debug Unit
- Demo

Using the HDL Instantiation Method

In HDL source code, use "KEEP" or "DON'T_TOUCH" to avoid target signals being optimized

```
attribute keep : string;
attribute keep of sineSel : signal is "true";
attribute keep of sine : signal is "true";
```

Get a probe list. Each probe connects to one signal. They have the same width

207

209

210

211

212

213

214

215

216

217

);

- Generate ILA ip core and add it to the project
- > Instantiate the ILA in HDL source code

	1	
-	clk	
-	probe0[0:0]	
	probe1[1:0]	
	probe2[3:0]	
at an	probe3[4:0]	
		_

XII INX > ALL PROGRAMMABLE.

Migrate from ICON to dbg_hub

Vivado can automatically generate dbg_hub after generating ILA

ICON is replaced by dbg_hub which is easy to use

XILINX > ALL PROGRAMMABLE.

- > Changing Device Configuration Bitstream Settings
- > Using the Netlist Insertion Method for Debugging a Design in Vivado
- > Using the HDL Instantiation Method for Debugging a Design in Vivado
- Using a VIO Core for Debugging a Design in Vivado
- Using Tcl to Create Debug Unit
- Demo

VIO

Virtual Input/Output (VIO) core

- Both monitor and drive internal FPGA signals in real time
- Synchronous to the design being monitored and/or driven
- Can only be used with HDL source code

XILINX > ALL PROGRAMMABLE.

- > Changing Device Configuration Bitstream Settings
- > Using the Netlist Insertion Method for Debugging a Design in Vivado
- > Using the HDL Instantiation Method for Debugging a Design in Vivado
- > Using a VIO Core for Debugging a Design in Vivado
- Using Tcl to Create Debug Unit
- Demo

Using Tcl to Create Debug Unit

```
create_debug_core u_ila_0 labtools_ila_v3
set_property port_width 1 [get_debug_ports u_ila_0/clk]
connect debug port u ila 0/clk [get nets [list clk]]
set_property port_width 2 [get_debug_ports u_ila_0/probe0]
connect_debug_port u_ila_0/probe0 \
[get_nets [list {sel[0]} {sel[1]}]]
create debug port u ila 0 probe
set_property port_width 2 [get_debug_ports u_ila_0/probe1]
connect debug port u ila 0/probe1 \
[get_nets [list {GPIO_BUTTONS_db[0]} {GPIO_BUTTONS_db[1]}]
```

Disconnect debug port

disconnect_debug_port u_ila_0/probe1

Hardware Manager

- > Two files are necessary
 - ✓ .bit
 - debug_nets.ltx: probes information files
 - .ltx can be generated by write_debug_probes Tcl command

set_property PROGRAM.FILE {C:/design.bit} [lindex [get_hw_devices] 0]
set_property PROBES.FILE {C:/design.ltx} [lindex [get_hw_devices] 0]

- > Changing Device Configuration Bitstream Settings
- > Using the Netlist Insertion Method for Debugging a Design in Vivado
- > Using the HDL Instantiation Method for Debugging a Design in Vivado
- Using a VIO Core for Debugging a Design in Vivado
- Using Tcl to Create Debug Unit
- Demo

