MLIR 是Google在2019年开源出来的编译框架。不久之前意外加了nihui大佬建的MLIR交流群,不过几个月过去了群里都没什么人说话,说明没人用MLIR(不是。现在刚好组里的老师对MLIR比较感兴趣让我进行一下调研,于是就有这篇比较简单的调研报告啦!

MLIR的全称是 Multi-Level Intermediate Representation. 其中的ML不是指Machine Learning,这一点容易让人误解,但现在的一些ML框架有些也在往MLIR靠,比如Tensorflow、Pytorch、ONNX都在写Dialect往MLIR上贴贴,Google的IREE是基于MLIR的End2End推理框架;ML也可以是Mid-Level,因为MLIR要解决Mid-Level IR的碎片化问题;ML也可以是摩尔定律,因为MLIR的Paper的标题是为了摩尔定律终结而诞生的编译器技术设施,当然也可以是Modular Library,现在看来,MLIR至少是一个优秀的编译器库。

一些你可以帮助你了解MLIR的资源:

  1. MLIR官网

  2. 目前,MLIR已经迁移到了LLVM下面进行维护。

    https://github.com/llvm/llvm-project/tree/main/mlir/

  3. 如果想要引用MLIR,使用这一篇Paper:MLIR: A Compiler Infrastructure for the End of Moore’s Law

  4. LLVM/MLIR Forums

  5. LLVM Discord 在线聊天室

MLIR SIG 组每周都会有一次 public meeting,如果你有特定的主题想讨论或者有疑问,可以根据官网主页提供的方法在他们的文档里提出,有关如何加入会议的详细信息,请参阅官方网站上的文档。

Digilal DesignEEEE

这篇文章是2021年中国科学院大学李炼老师的《编译程序高级教程》一课的学习笔记,这门课程的内容主要是基于LLVM来做一些中间代码的优化。不建议没有学习或者了解过编译原理的同学选修,平时作业占比较大,一共三次大作业共占期末总成绩的80分,然后是期末考试只有20分(而且可以使用离线的电子设备。但是作业爆炸难,是使用LLVM来实现一些程序分析,实现一个简单的C程序解释器、数据流分析、指针分析等。很多知识也是在我写这篇笔记的整理与复习的过程中才看明白的。

相似的课程为多伦多大学的CSCD70。而且就在考试的前一周,国内也有这方面可以看的公开课视频了,那就是南京大学的软件分析,兄弟们把泪目打在公屏上!

还有一些非常有用的参考资料:

CompilerLLVMCourse

前言

在之前的文章里笔者已经记述了怎样在FPGA上映射由英伟达开源的加速器NVDLA。但是NVDLA的官方发布的工具链很弱,只能端到端地运行极为简单的分类网络,而现在在绝大部分的深度神经网络应用里分类往往只是其中一小部分。例如我现在想利用加速器去运行yolo,但其中有许多加速器并不支持的算子,加速器支持的convolution、pooling、relu等等算子最好都要用加速器运行,而那些不支持的算子则需要Fallback到CPU去运行。

这片文章要介绍的是笔者利用Open AI Lab开源的边缘设备推理框架Tengine,为NVDLA打造一套新的工具链!

banner

TengineNVDLA

为接下来要尝试基于 Tengine 完成 CPU Fallback 的工作,在组里的 ZCU 102 开发板上进行了 NVDLA 的移植。本来以为这个过程会很顺利,没想到还是因为各种问题还是花费了一个星期的时间。

这篇文章记述了部分关于 ZCU102 rev1.1 板卡的坑点,以及利用chroot基于Ubuntu Base Rootfs来订制 aarch64 ubuntu 的文件系统流程。

Digilal DesignEEEE