GPU MODE Community

BitBLAS: Enabling Efficient Low-Precision Deep Learning Computing

Lei Wang (/leɪ waːŋ/)

leiwang1999@outlook.com

Oct 26, 2024

Outline

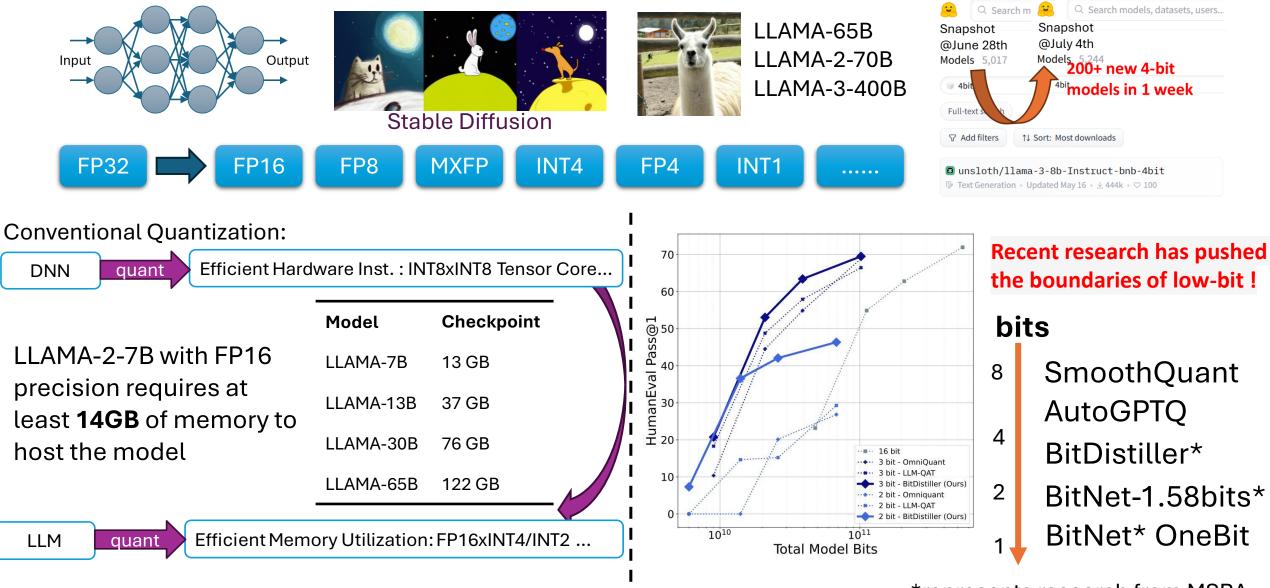
Background: Mixed-Precision Computing

Introduction: Design of BitBLAS/Ladder

Experiments (End2End/OP): NVIDIA/AMD

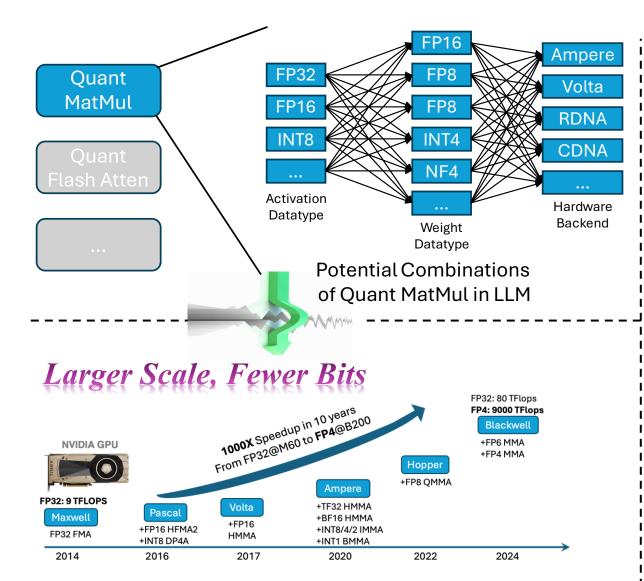
Tutorials in Jupyter: BitBLAS\Ladder\Tile Language

Larger Scale, Fewer Bits



*represents research from MSRA

Challenges



Hardware evolutions of Lower Precision Computing

Three Major Challenges

Unsupported numerical precision in software New data types such as NF4/AF4/MXFP have emerged.

Unsupported compute inst. in hardware

Most Hardware doesn't have FP16xINT4 unit.

Combination explosion and hard to optimize

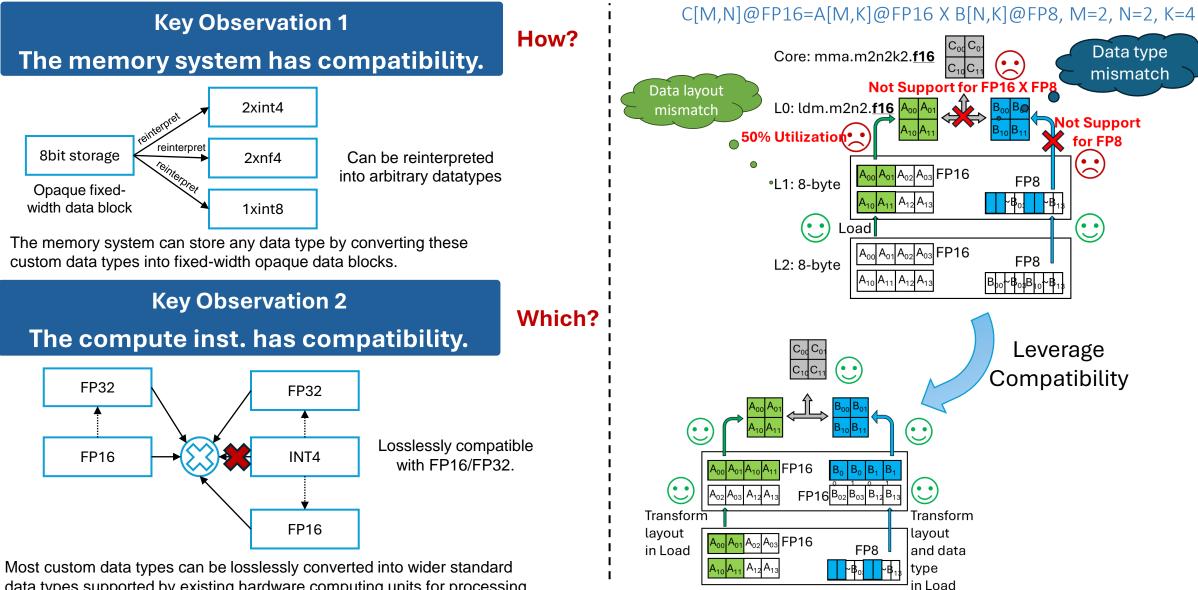
Though vendors and developers has given attention.

Supports of Vendor Library and MLC

Data Type	V	$V_{FP16}A_{FP}$	P16	V	$V_{INT8}A_{IN}$	T 8	$W_{FP8}A_{FP8}$	$W_{NF4}A_{FP16}$		
GPU	V100 A100 MI250		V100	/100 A100 MI250		V100/A1	00/MI250			
cuBLAS	78%	87%	Х	Х	68%	Х	X	Х		
rocBLAS	X	Х	46%	Х	Х	75%	X	Х		
AMOS	64%	38%	Х	Х	45%	Х	X	Х		
TensorIR	67%	56%	22%	Х	Х	Х	X	Х		
Roller	50%	70%	29%	Х	Х	Х	Х	Х		

Insights

Mixed-Precision GEMM Execution Flow

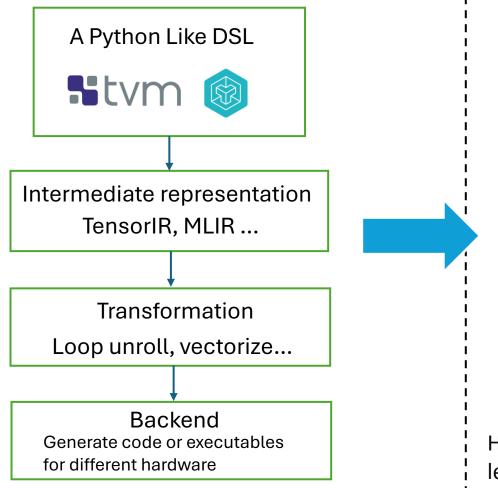


data types supported by existing hardware computing units for processing.

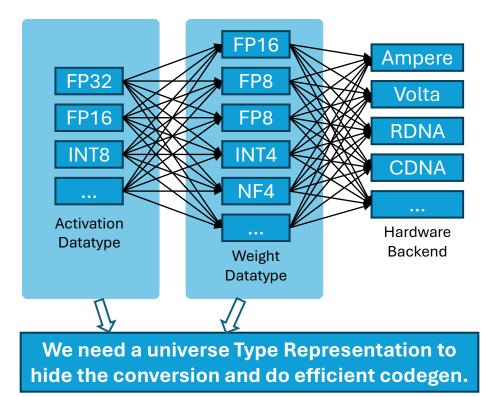
Separate Datatype and Computing with Machine Learning Compilation

Conventional MLC

Separate Compute from Schedule



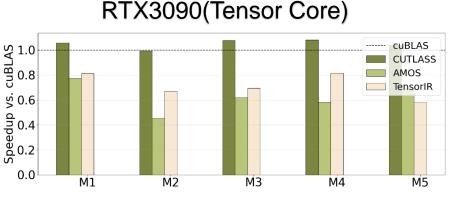
Like ML Compilation, Can we ..



However, the performance of current machine learning compilation tasks is still unsatisfactory, even under hardware-supported instructions.

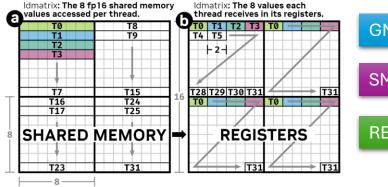
 \cap

Existing compilation systems fail to fully utilize the performance of computing units



MatMul Performance of MLC under

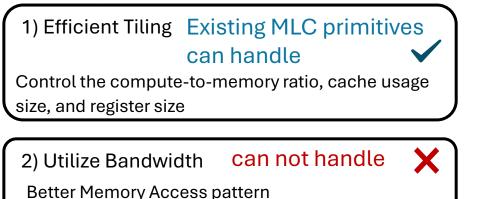
Simple memory accesses struggle to meet the demands of various storage levels simultaneously.



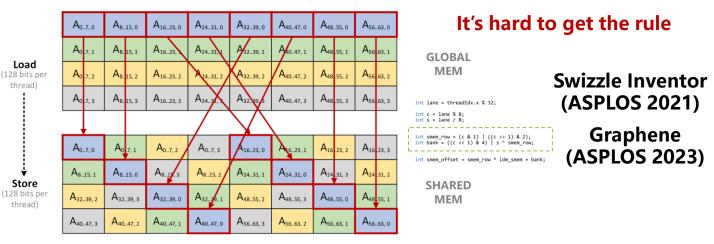
GMEM: expect coalesced access SMEM: expect free bank conflict REG: align with instruction

AMOS, Tensor IR can only reach 60-80% performance of cuBLAS.

Major Factors for Performance

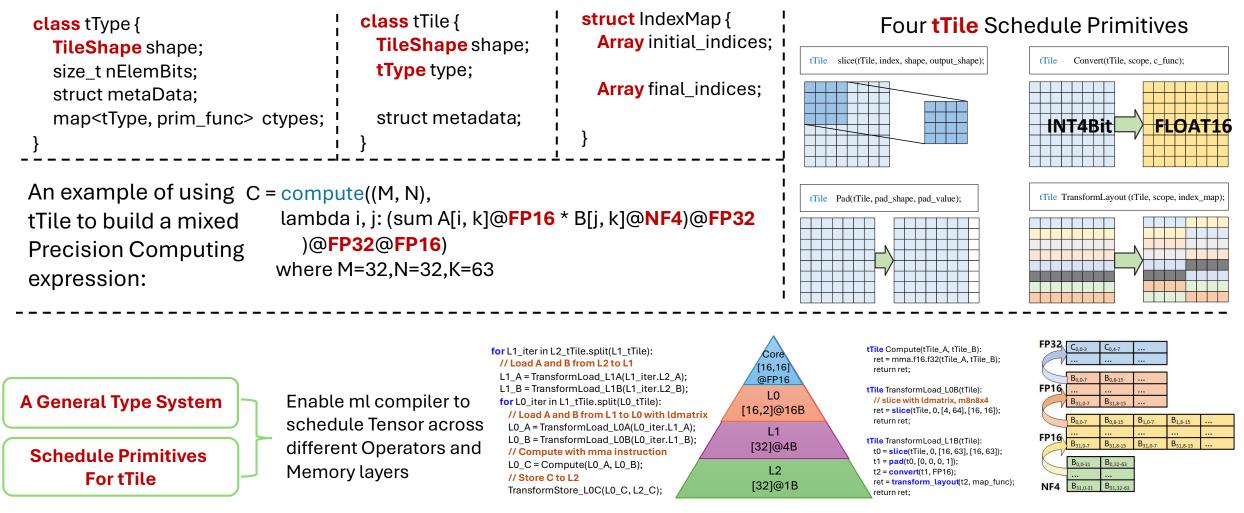


A Swizzling Rule for 8-Bit Tensor Cores (NVIDIA GTC 2020)



Insight: The Abstract needs to be aware of and manipulate the data layout of tensors!

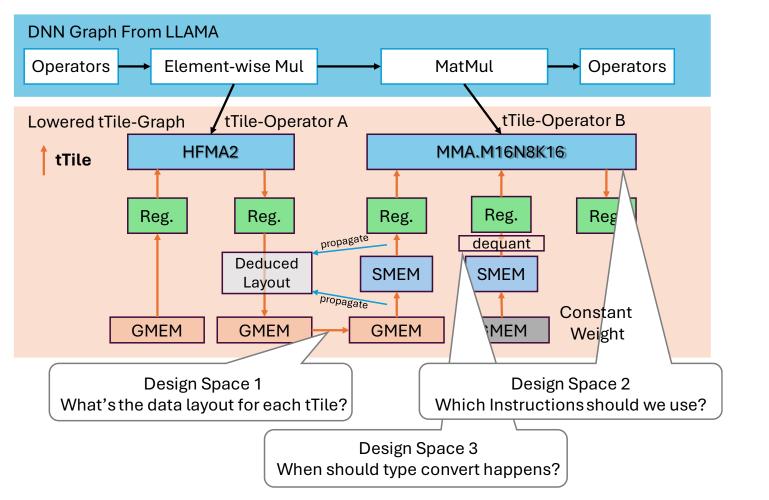
Tensor-Centric System Abstractions



An example scheduled executed plan with tTile schedule primitives on nvidia gpus.

New Design Space

Example of our tTile-Graph abstraction for end2end optimization from LLAMA, enabling more fine-grained control across operators and even different memory layers.



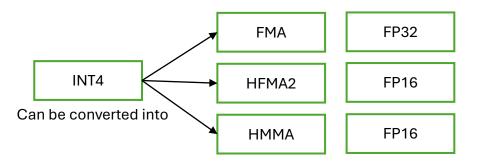
More detail, download:

These abstractions enlarge the scheduling space for DNN computation!

OSDI 2024' Ladder

Auto Normalize Computation into Hardware Instructions

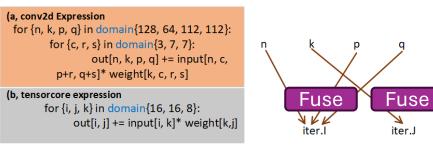
Bit-nearest instruction matching

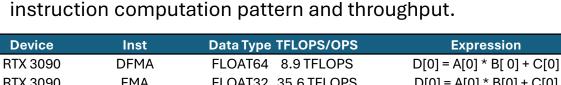


Iterator-based auto expr normalization

Example of normalizing conv2d into tensorcore inst.

Which enables us to explore if a given customized op(conv, stencil) can be tensorized by target instruction.





Fuse

V V V

iter.K

Matches the instruction type to be converted based on the

RTX 3090	FMA	FLOAT32	35.6 TFLOPS	D[0] = A[0] * B[0] + C[0]
RTX 3090	IMAD	INT32	17.8 TOPS	D[0] = A[0] * B[0] + C[0]
RTX 3090	HFMA2	FLOAT16	35.6 TFLOPS	D[0:2] = A[0:2] * B[0:2] + C[0:2]
RTX 3090	DP4A	INT8	71.2 TOPS	D[0] = dot(A[0:4], B[0:4]) + C[0]
RTX 3090	HMMA.m16n8k16.f16	FLOAT16	142 TFLOPS	D[0:16, 0:16] = dot(A[0:4], B[0:4]) + C[0]
RTX 3090	IMMA.m16n8k32.s8	INT8	284 TOPS	D[0:16, 0:16] = dot(A[0:4], B[0:4]) + C[0]

Tutorial: Auto Tensorize

(d, Auto-normalized conv2d program

for {n, p, q, r, s, c} in domain{128, 112, 112, 7, 7, 3}: input1[n * 12544 + p * 112 + q, r * 21 + s * 3 + c] = input[v0, v1 * 2 + v3, v2 * 2 + v4, v5]

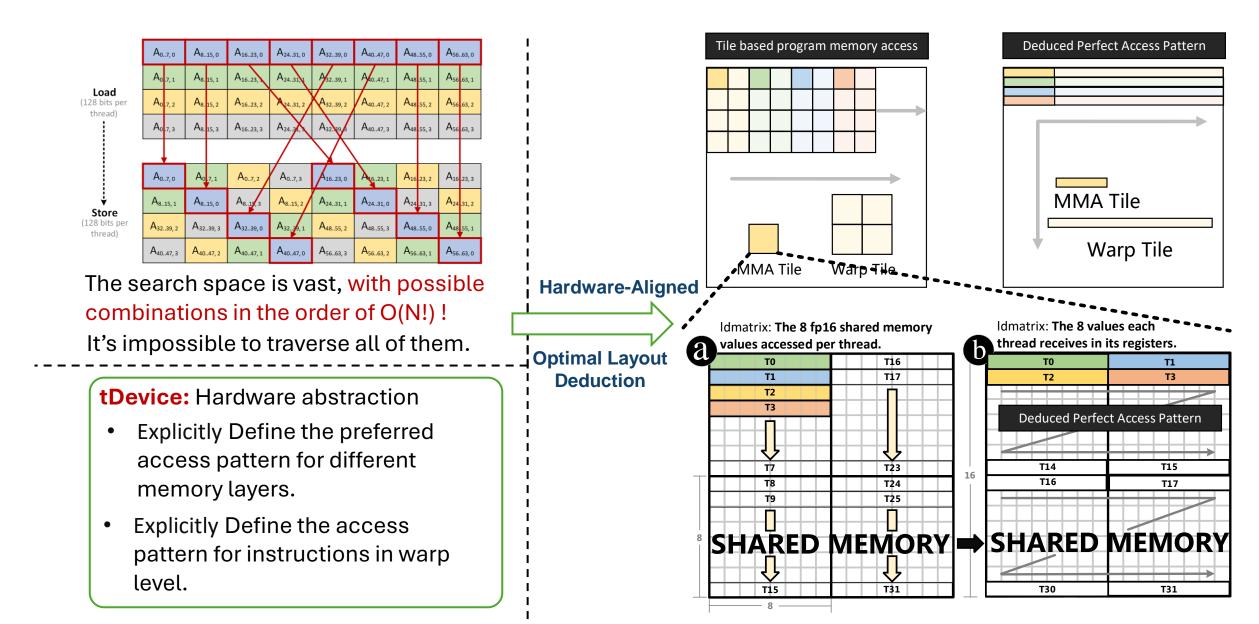
for k, r, s, c in domain{64, 7, 7, 3}: weight1[k, r * 21 + s * 3 + c] = weight[k, r, s, c]

for {i, j, k} in domain{1605632, 64, 147}:
 out[i, j] += input1[i, k]* weight1[k, j]

;, C	lass	ified	by	itera	tors
	;, C	, Class	, Classified	, Classified by	, Classified by itera

Layer	n	k	p	q	С	r	S	stride	Input Layout	Weight Layout	Target Instructions	Auto Tensorize Mapping
CO	128	64	224	224	3	7	7	2	NHWC	HWIO	mfma.m16n8k16	$[n*12544 + h*112 + w, f, r*21 + s*3 + c] \rightarrow [I, J, K]$
C1	128	64	56	56	64	3	3	1	NHWC	OHWI	mfma.m16n8k16.trans	$[n*3136 + h*56 + w, f, r*192 + s*64 + c] \rightarrow [I, J, K]$
C2	128	64	56	56	64	1	1	1	NHWC	HWIO	mfma.m16n8k16	$[n * 3364 + h * 58 + w, f, c] \rightarrow [I, J, K]$
C3	128	64	56	56	64	1	1	1	NHWC	OHWI	mfma.m16n8k16.trans	$[n * 3364 + h * 58 + w, f, c] \rightarrow [I, J, K]$
C4	128	128	28	28	128	3	3	1	NHWC	OHWI	mfma.m16n8k16.trans	$[n*784 + h*28 + w, f, r*384 + s*128 + c] \rightarrow [I, J, K]$
C5	128	256	14	14	128	3	3	2	NHWC	HWIO	mfma.m16n8k16	$[n*49 + h*7 + w, f, r*384 + s*128 + c] \rightarrow [I, J, K]$
C6	128	256	14	14	128	1	1	2	NHWC	OHWI	mfma.m16n8k16.trans	$[n * 64 + h * 8 + w, f, c] \rightarrow [I, J, K]$

Hardware Aligned Layout Propagation



Hardware Aligned Layout Propagation

Deduce

Hardware Aligned Layout Deduction

Define Computation with DSL (TIR)

```
@tvm.script.ir_module
class MyModule:
   @T.prim_func
   def main(a: T.handle, b: T.handle, c: T.handle):
      T.func_attr({"global_symbol": "main", "tir.noalias": True})
      A = T.match_buffer(a, [M, K], dtype="float16")
      B = T.match_buffer(b, [N, K], dtype="float16")
      C = T.match_buffer(c, [M, N], dtype="float16")
       for i, j, k in T.grid(M, N, K):
          with T.block("B"):
             vi, vj, vk = T.axis.remap("SSR", [i, j, k])
             with T.init():
                 C[vi, vj] = T.float16(0)
             C[vi, vj] = C[vi, vj] + \setminus
                 A[vi, vk].astype("float16") * B[vj,
vk].astype("float16")
```

Specify a Hardware ("rtx-3090")

Bottom-up hardware instruction selection									
Depth	Туре	Instructions							
0	Compute	2xmma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16							
1	Shared Load	ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16							
2	Shared Store	st.shared.v4.u32							
3	Global Load	ld.global.v4.u32							

The memory-intensive operator for re-layout the input.

B[vi // 16, vj // 16, vi % 16, vj % 16] = A[vi // 8 * 8 + vi % 4 * 2 + vj % 16 // 8, vj // 16 * 16 + vi % 8 // 4 * 8 + vj % 8]

B[vi // 16, vj // 16, vi % 16, vj % 16] =
A[vi // 8 * 8 + vi % 4 * 2 + vj % 16 // 8, vj // 16 * 16 + vi % 8 // 4 * 8 + vj % 8]

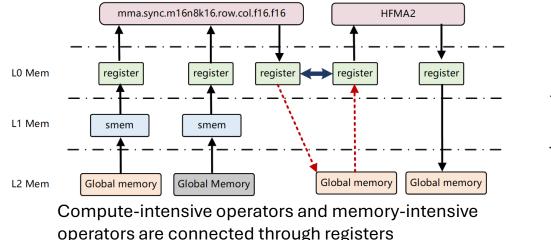
Compute-Intensive Op with Perfect Layout Access

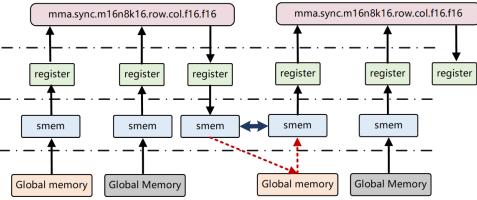
```
@I.ir_module
class Module:
   @T.prim_func
   def main(A: T.Buffer(), B: T.Buffer(), C: T.Buffer():
      __fetch2shared()
      for ax0, ax1, ax2, ax3 in T.grid(1024, 1024, 16, 16):
         with T.block("A_shared_warp"):
             v0, v1, v2, v3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
             A_shared_warp[v0, v1, v2 * 2 + v3 // 8, v3 % 8] = A_shared[v0, v1, v2, v3]
      for ax0, ax1, ax2, ax3 in T.grid(1024, 1024, 16, 16):
         with T.block("B_shared_warp"):
             v0, v1, v2, v3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
             B_shared_warp[v0, v1, v2 * 2 + v3 // 8, v3 % 8] = B_shared[v0, v1, v2, v3]
      for ii, jj, kk, i, j, k in T.grid(1024, 1024, 1024, 16, 16, 16):
         with T.block("B"):
             vii, vjj, vkk, vi, vj, vk = T.axis.remap("SSRSSR", [ii, jj, kk, i, j, k])
             with T.init():
                C_warp[vii, vjj, vi % 8 * 4 + vj % 8 // 2, vj // 8 * 4 + vi // 8 * 2 + vj % 2]
                      = T.float16(0)
            C_warp[vii, vjj, vi % 8 * 4 + vj % 8 // 2, vj // 8 * 4 + vi // 8 * 2 + vj % 2]
                += A_shared_warp[vii, vkk, vi * 2 + vk // 8, vk % 8]
                   * B_shared_warp[vjj, vkk, vj * 2 + vk // 8, vk % 8]
      for ax0, ax1 in T.grid(16384, 16384):
         with T.block("C_warp"):
             v0, v1 = T.axis.remap("SS", [ax0, ax1])
            C[v0, v1] = C_warp[v0 // 16, v1 // 16,
```

Advantages and Limitations

- Advantages: Eliminates the search space for data layout in tensor scheduling, requiring only derivation.
- Limitations: Requires pre-conversion of data layout, which introduces¹² conversion overhead.

Resolve the Limitation with Tile-Graph

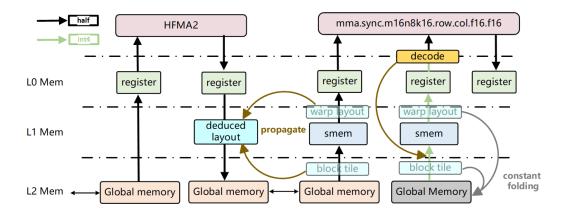




Compute-intensive operators are connected through shared memory.

OSDI'23: Welder: High Performance Operator Fusion with Tile-Graph

Latency Hiding Method Based on Tile-Graph



Constant Folding for Static Weights: Arrange weights during the compilation phase to hide latency.

Forward Propagation of Data Layout Between Operators: The preceding operator can process and write back data directly in the layout expected by the subsequent operator during execution, thereby avoiding additional data layout conversion operations between the two operators.

Discussion: The performance Impact of introducing Layout Transformation Fusion.

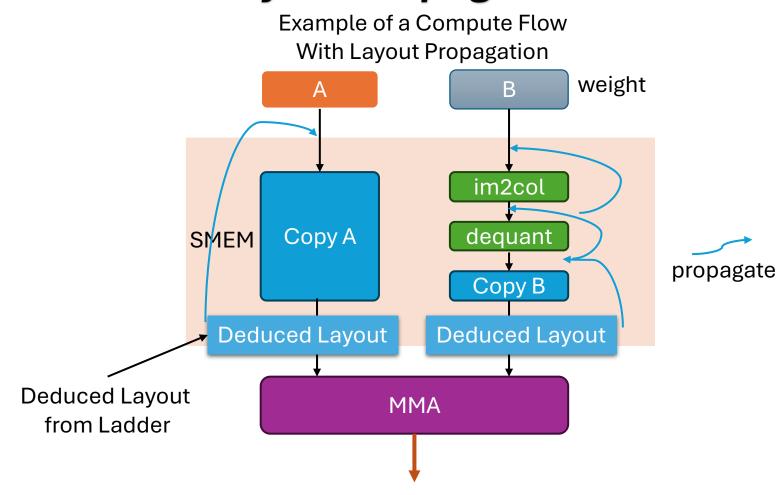
Why we need to introduce Layout Propagation?

Challenges

1. The dimensions of the instructions and computations do not align.

2. There are several peripheral computations outside the core **MMA** instructions.

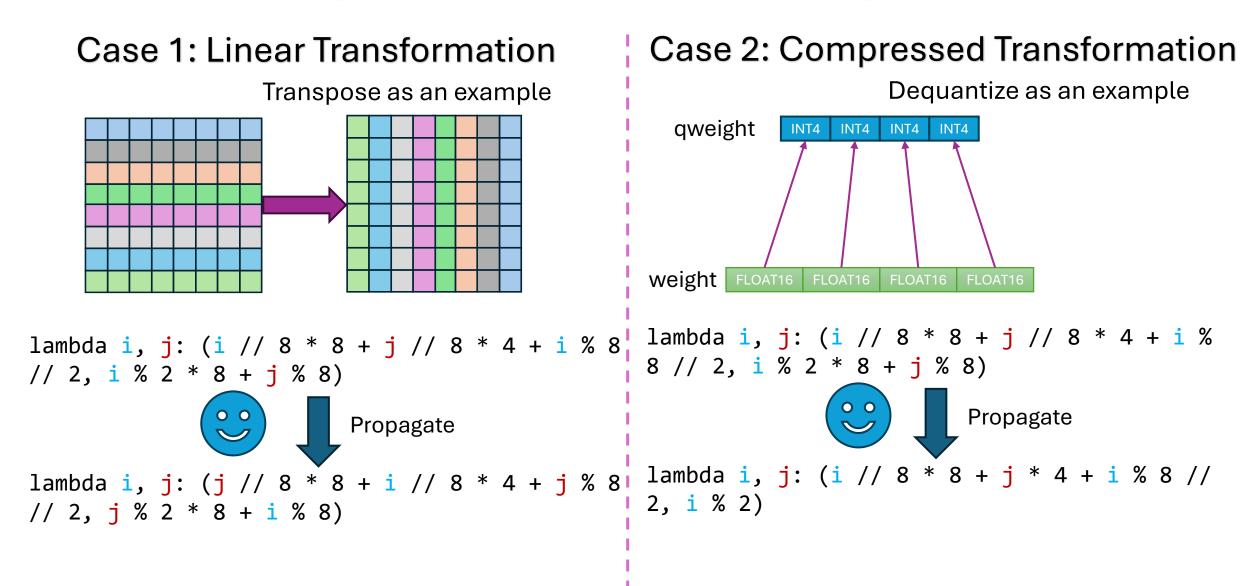
3. Complex mapping relationships introduced by nonlinear transformations (dequant, groupscale).



Im2col and dequant will transform the layout as well

The deduced layout should be able to propagate across different compute blocks !

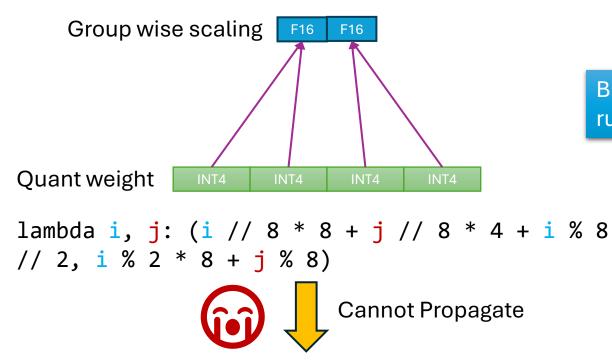
Methodology: Three different layout propagate modes



Methodology: Three different layout propagate modes

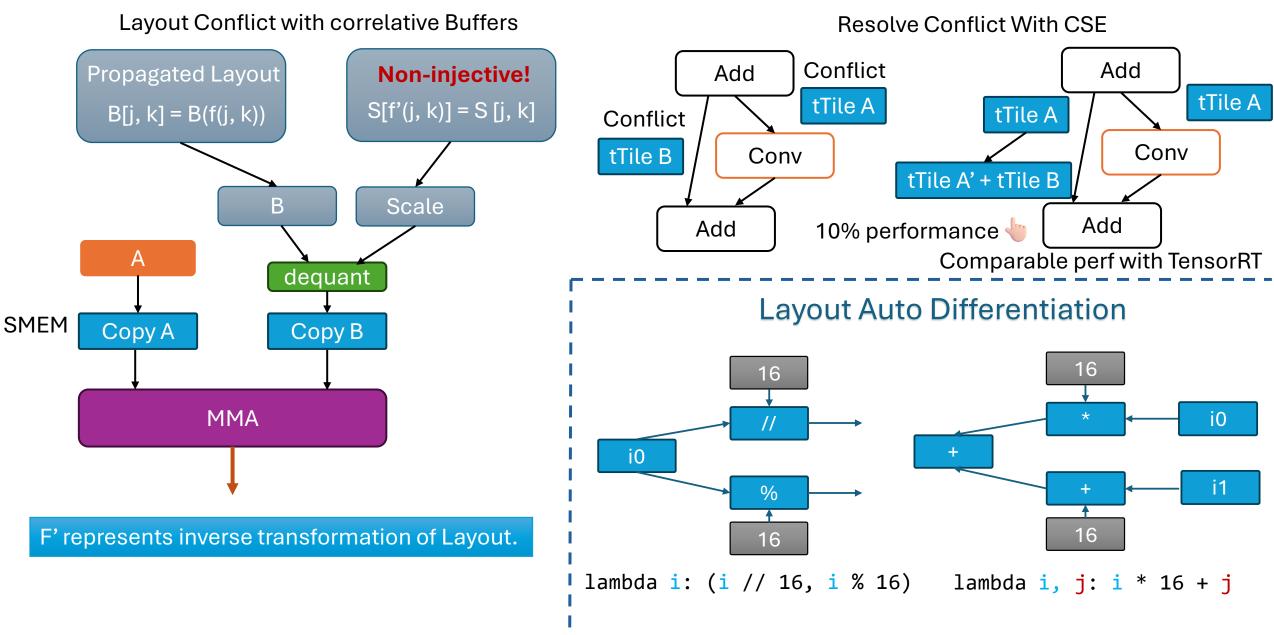
Case 3: non-injective Transformation

Dequantize as an example



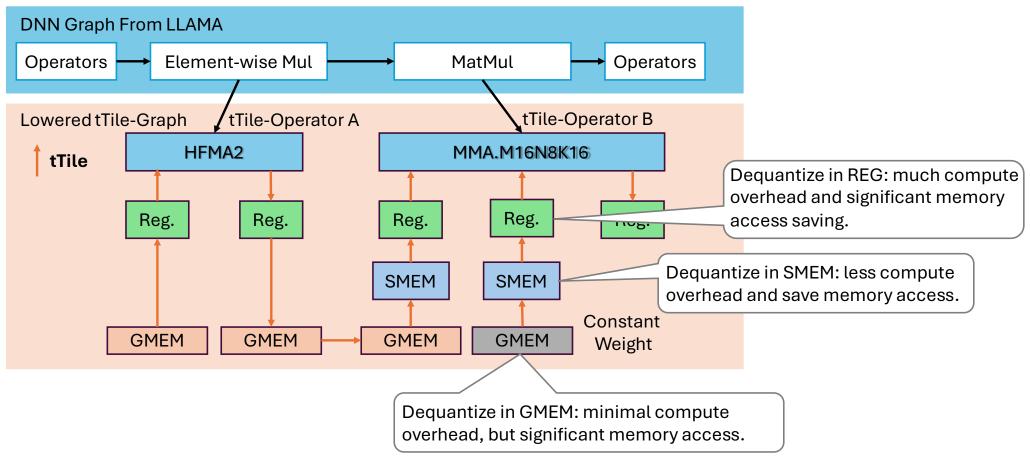
BitBLAS implements auto-layout propagation rules based on three patterns.

Resolve Conflict: Layout Auto Differentiation



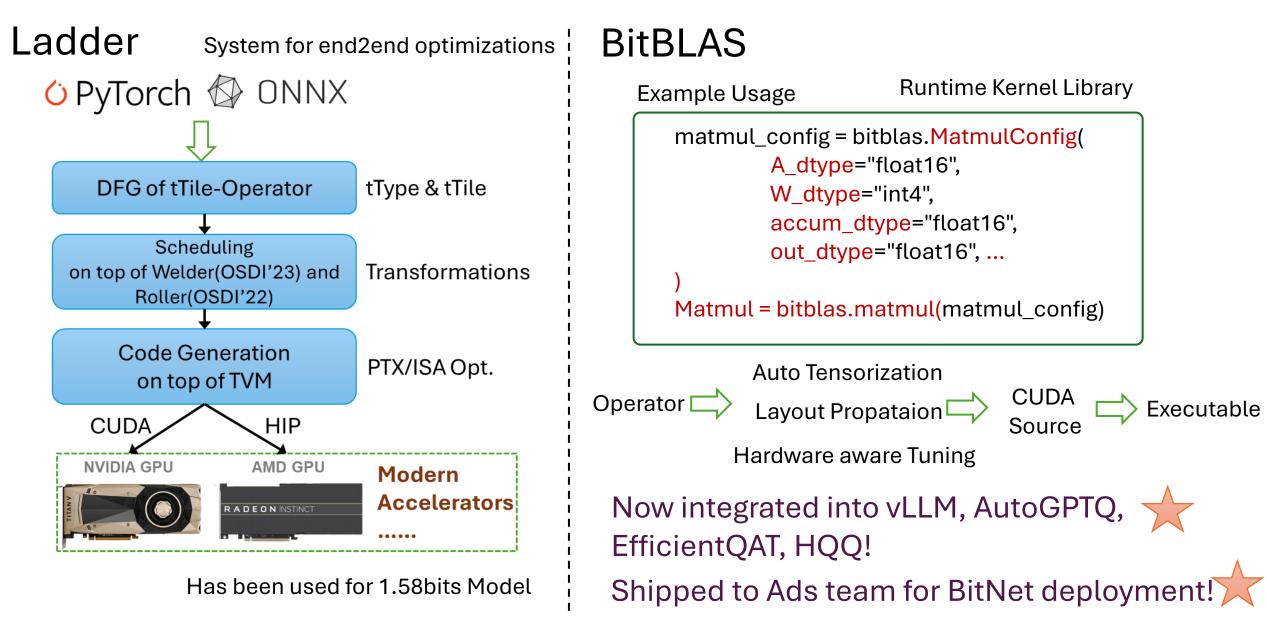
Latency-Oriented Optimization Search Policy

The abstraction enlarges the scheduling space for DNN computation and opens a new trade-off between memory footprint efficiency and latency efficiency.



When the storage of the system is sufficient, additional searches are made for the latency overhead of performing type conversions at each stage and the configuration with the shortest latency is selected

System Overview of Ladder/BitBLAS



Vectorized Dequantization with Weight Interleave

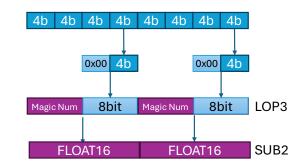
Conventional Dequantization

Introducing a certain amount of computation can become a bottleneck in performance Especially on devices with fewer bits and weaker compute cores (for example, cuda core on a100).

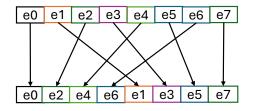
Who Says Elephants Can't Run:Bringing Large Scale MoE Models into Cloud Scale Production $(-1)^{sign} * 2^{exponent} -15} * (1 + \frac{fraction}{1024})$ MAGIC Number $1024 * (1 + \frac{fraction}{1024}) = 1024 + fraction$

For example, for number 3, we can add $1024 \rightarrow 0x6400 \mid 0x0003$ 1024 * (1 + 3/1024) = 1024 + 3And to get float $3.0 \rightarrow (1024 + 3) - 1024$

Vectorized Dequantization



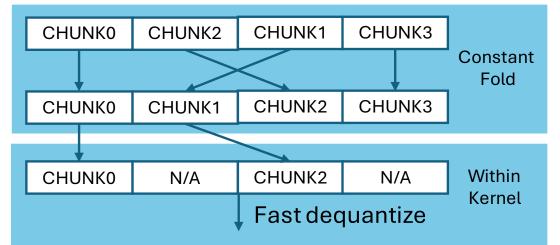
Tutorial: Fast Dequantize



While it's hard to be extended into fewer bits

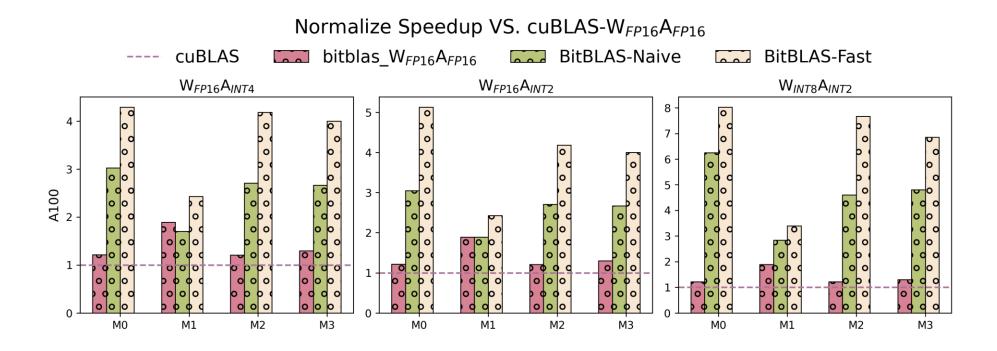
e0	e4	e8	e12	N/A	N/A	N/A	N/A	e1	e5	e9	e13		
----	----	----	-----	-----	-----	-----	-----	----	----	----	-----	--	--

BitBLAS: Chunk Level Interleave

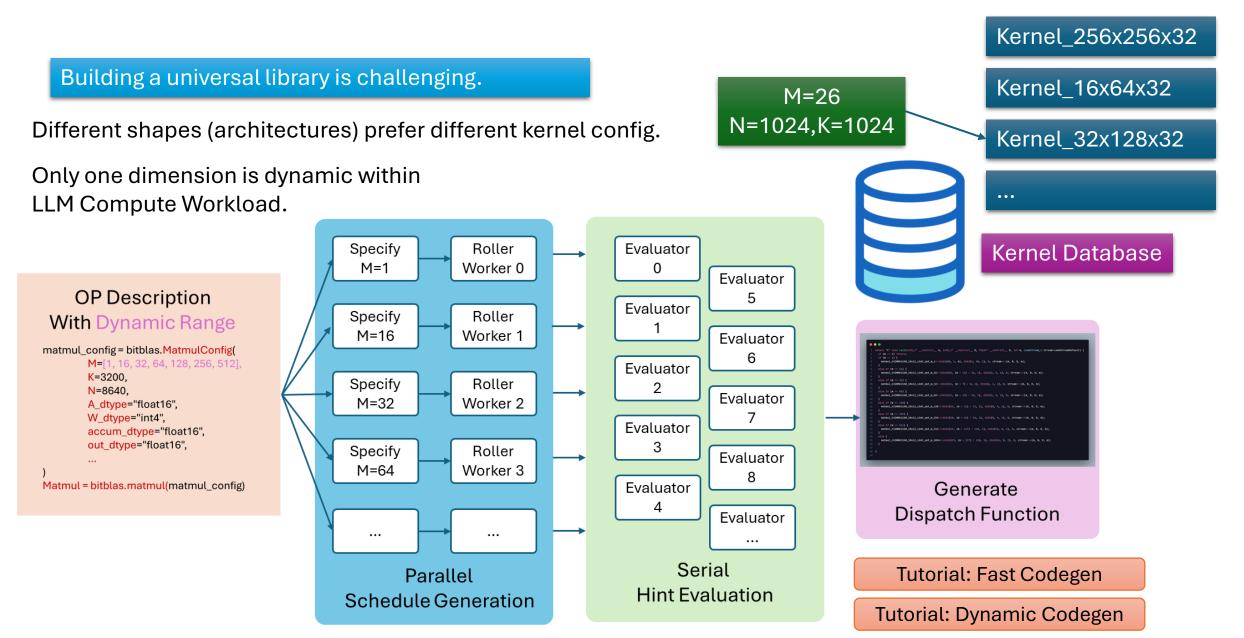


Extension for BitBLAS To Support More Fewer Bits (1/2b to 8/16b) And we also provide Other Fast Dequantize: FP8->FP16

Fast Decoding Performance on A100 GPU



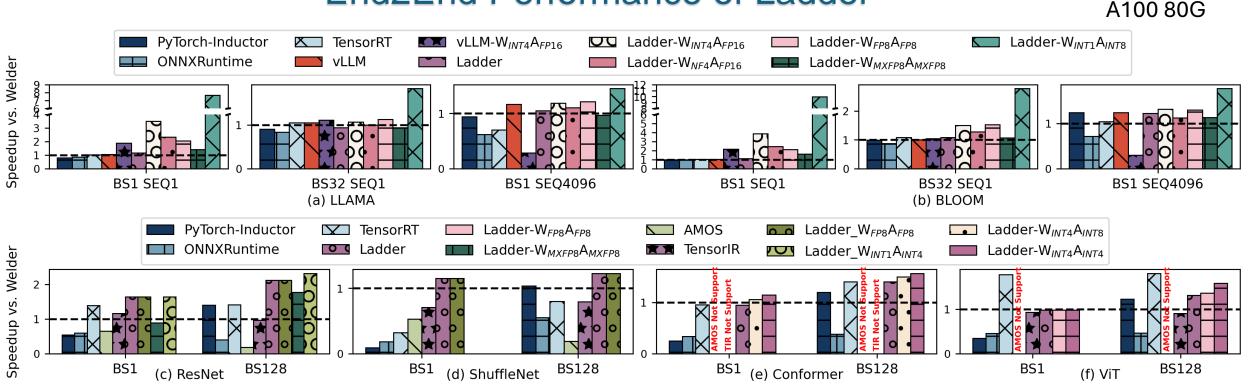
Fast and Efficient Dynamic Kernel Tuning



•••

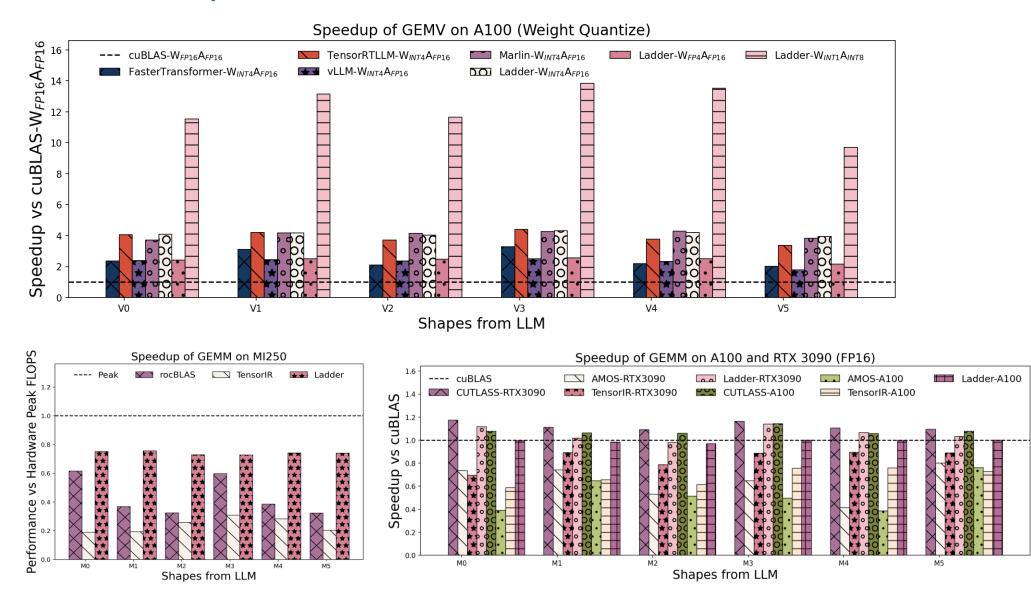
```
1 extern "C" void call(int8 t* restrict A, int8 t* restrict B, float* restrict D, int m, cudaStream t stream=cudaStreamDefault) {
     if (m == 0) return;
     if (m <= 1) {
       matmul_n3200k2160_i8xi2_simt_opt_m_1<<<<dim3(80, 1, m), dim3(3, 40, 1), 0, stream>>>(A, B, D, m);
      }
     else if (m <= 16) {
       matmul_n3200k2160_i8xi2_simt_opt_m_16<<<dim3(64, (m + 15) / 16, 1), dim3(2, 4, 1), 0, stream>>>(A, B, D, m);
     else if (m <= 32) {
       matmul_n3200k2160_i8xi2_simt_opt_m_32<<<dim3(32, (m + 7) / 8, 1), dim3(4, 2, 1), 0, stream>>>(A, B, D, m);
11
      }
     else if (m \le 64) {
12
13
       matmul n3200k2160 i8xi2 simt opt m 64<<<dim3(32, (m + 15) / 16, 1), dim3(4, 4, 1), 0, stream>>>(A, B, D, m);
      }
     else if (m <= 128) {
       matmul_n3200k2160_i8xi2_simt_opt_m_128<<<<dim3(25, (m + 31) / 32, 1), dim3(8, 4, 1), 0, stream>>>(A, B, D, m);
16
17
     else if (m <= 256) {
       matmul_n3200k2160_i8xi2_simt_opt_m_256<<<dim3(50, (m + 63) / 64, 1), dim3(8, 4, 1), 0, stream>>>(A, B, D, m);
     else if (m <= 512) {
       matmul n3200k2160 i8xi2 simt opt m 512<<<dim3(25, (m + 127) / 128, 1), dim3(16, 8, 1), 0, stream>>>(A, B, D, m);
22
      }
23
     else {
       matmul_n3200k2160_i8xi2_simt_opt_m_1024<<<dim3(25, (m + 127) / 128, 1), dim3(16, 8, 1), 0, stream>>>(A, B, D, m);
      }
28 }
```

End2End Performance of Ladder

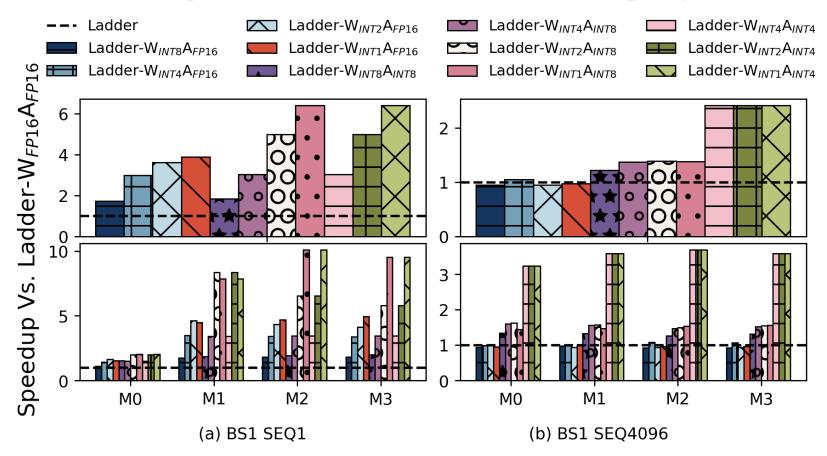


- W_{FP16}A_{FP16} : ~ 1.1x/1.1x avg. speedup over Welder/TensorRT
- $W_{INT4}A_{FP16}$ (GPTQ) ~ 2.3x avg. speedup over vLLM- $W_{INT4}A_{FP16}$
- W_{INT1}A_{INT8} (BitNet): up to 8.8x speedup over Ladder- W_{FP16}A_{FP16} (on BLOOM-176B-BS1SEQ1)

Operator Performance of BitBLAS



System Performance Scaling Up



Decode: Memory Intensive

Quantized kernels can benefit from reduced memory bandwidth usage.

Prefill Compute Intensive

Quantized kernels can benefit from more efficient hardware instructions.

- BS1 SEQ1: bounded by memory bw., up to 6.4x speedup (10.1x speedup on kernel)
- BS1 SEQ4096: bounded by tensor core, up to 2.4x speedup (3.7x speedup on kernel)

Summary

We proposed universe Tensor Abstractions and Schedule Primitives to enable ml compiler explore tensor scheduling

We proposed a hardware-aligned Memory Layout Propagation Strategy to auto inference Memory Layout and eliminate the overhead.

We proposed a bit-nearest and instruction aligned tensorization strategy.

We introduce a Latency-oriented Search Policy

We designed Ladder and BitBLAS.

Challenges From The Community

Though bitblas has been integrated into vLLM, AutoGPTQ, HQQ

Kernel Compilation takes too much time even though with Kernel Database.

Runtime Kernel Library may lead to uncomfortable user experience.

Schedule Based Implementations make it hard for developers to extend BitBLAS.

Schedule Based Implementation is hard to describe complex ops(like stream-k, flash Atten)

We're leveraging TileLang to handle issue 2 and 3 as triton is hard to describe dequant related items.

Thanks for watching

More info, reproduce, reach: https://github.com/microsoft/BitBLAS

More detail, download: OSDI 2024' Ladder

Oct 26, 2024