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Background: Mixed-Precision Computing

Tutorials in Jupyter: BitBLAS\Ladder\Tile Language

Introduction: Design of BitBLAS/Ladder

Experiments (End2End/OP): NVIDIA/AMD



Larger Scale, Fewer Bits

FP32 FP16 MXFP INT4 FP4 INT1 ……FP8

LLAMA-65B
LLAMA-2-70B
LLAMA-3-400B

Stable Diffusion

Model Checkpoint

LLAMA-7B 13 GB

LLAMA-13B 37 GB

LLAMA-30B 76 GB

LLAMA-65B 122 GB

LLAMA-2-7B with FP16
precision requires at
least 14GB of memory to
host the model

Recent research has pushed 
the boundaries of low-bit !

AutoGPTQ
BitDistiller*
BitNet-1.58bits*

SmoothQuant8

bits

4

2

1 BitNet* OneBit

*represents research from MSRA

Conventional Quantization:

                                                  

                                                 



Challenges

Hardware evolutions of Lower Precision Computing

Three Major Challenges
Unsupported numerical precision in software

New data types such as NF4/AF4/MXFP have emerged.

Unsupported compute inst. in hardware
Most Hardware      ’ have FP16xINT4 unit.

Combination explosion and hard to optimize
Though vendors and developers has given attention.

Supports of Vendor Library and MLC

    

    

    

    

 

   

   

    

   

 

      

     

    

    

 

      
        

          
                

       

                     
                  

     
      

     
           

 



            
        

一 : 内存系统具有兼容性

8bit storage

2xint4

2xnf4

1xint8
Opaque fixed-

width data block

Can be reinterpreted
into arbitrary datatypes

The memory system can store any data type by converting these 

custom data types into fixed-width opaque data blocks.

FP16 INT4

FP16

FP32FP32

Losslessly compatible 

with FP16/FP32.

Most custom data types can be losslessly converted into wider standard 

data types supported by existing hardware computing units for processing.

The memory system has compatibility.
Key Observation 1

reinterpret

一 : 内存系统具有兼容性

The compute inst. has compatibility.
Key Observation 2

How?

Which?

          
        

Mixed-Precision GEMM Execution Flow
C[M,N]@FP16=A[M,K]@FP16 X B[N,K]@FP8, M=2, N=2, K=4

Leverage
Compatibility

Insights



Separate Datatype and Computing
with Machine Learning Compilation

FP32

FP16

INT8

FP16

…

FP8

FP8

INT4

NF4

…

Ampere

Volta

RDNA

CDNA

…

Weight
Datatype

Activation
Datatype

Hardware
Backend

We need a universe Type Representation to
hide the conversion and do efficient codegen.

However, the performance of current machine 
learning compilation tasks is still unsatisfactory, 
even under hardware-supported instructions.

Like ML Compilation, Can we ..Conventional MLC

A Python Like DSL

Intermediate representation
TensorIR, MLIR…

Transformation
Loop unroll,          …

Backend
Generate code or executables
for different hardware

Separate
Compute from
Schedule



Existing compilation systems fail to 
fully utilize the performance of computing units

AMOS，Tensor IR can only reach 60-80% performance of
cuBLAS.

Major Factors for Performance

MatMul Performance of MLC under

RTX3090(Tensor Core)

Existing MLC primitives
can handle

1) Efficient Tiling

Control the compute-to-memory ratio, cache usage 
size, and register size

can not handle2) Utilize Bandwidth
Better Memory Access pattern

Simple memory accesses struggle to meet the demands of 
various storage levels simultaneously.

A Swizzling Rule for 8-Bit Tensor Cores (NVIDIA GTC 2020)

It’s hard to get the rule

Swizzle Inventor
(ASPLOS 2021)

Graphene
(ASPLOS 2023)

Insight: The Abstract needs to be aware of and manipulate the data layout of tensors!

GMEM: expect coalesced access

SMEM: expect free bank conflict

REG: align with instruction



Tensor-Centric System Abstractions

tTile Pad(tTile, pad_shape, pad_value);

tTile slice(tTile, index, shape, output_shape);

tTile TransformLayout (tTile, scope, index_map);

tTile Convert(tTile, scope, c_func);

INT4Bit FLOAT16

           
               
                
               
                           

 

Four tTile Schedule Primitives

                
                                           
            

                   

                 
                     

                  

 

             
               
          

                
 

  
       

  
       

  
          

    
       
     

                                       
                             
                                       
                                       
                                       
                                           
                                       
                                       
                               
                           
                
                               

                               
                                    
           

                              
                              
                                         
           

                              
                                         
                           
                       
                                     
           

An example of using 
tTile to build a mixed 
Precision Computing 
expression:

An example scheduled executed plan with tTile schedule primitives on nvidia 
gpus.

                                    
                    
                    
            

                  
        



New Design Space

                                       

                 

        

    

            

        

            

     

                 

                                                

       
      

       

             
                                

             
                              

        
      

             
                             

Example of our tTile-Graph abstraction for end2end optimization from LLAMA, enabling 
more fine-grained control across operators and even different memory layers.  

These abstractions enlarge the scheduling space for DNN computation! OSDI     ’ Ladder

More detail, download:



Auto Normalize Computation into Hardware Instructions

Iterator-based auto expr normalization

Example of normalizing conv2d into tensorcore inst.

Which enables us to explore if 
a given customized op(conv, 
stencil) can be tensorized by 
target instruction.

INT4

FMA

HFMA2

HMMA

FP32

FP16

FP16

Bit-nearest instruction matching
Matches the instruction type to be converted based on the 
instruction computation pattern and throughput.

Device Inst Data Type TFLOPS/OPS Expression
RTX 3090 DFMA FLOAT64 8.9 TFLOPS D[0] = A[0] * B[ 0] + C[0]
RTX 3090 FMA FLOAT32 35.6 TFLOPS D[0] = A[0] * B[0] + C[0]
RTX 3090 IMAD INT32 17.8 TOPS D[0] = A[0] * B[0] + C[0]
RTX 3090 HFMA2 FLOAT16 35.6 TFLOPS D[0:2] = A[0:2] * B[0:2] + C[0:2]
RTX 3090 DP4A INT8 71.2 TOPS D[0] = dot(A[0:4], B[0:4]) + C[0]
RTX 3090 HMMA.m16n8k16.f16 FLOAT16 142 TFLOPS D[0:16, 0:16] = dot(A[0:4], B[0:4]) + C[0]
RTX 3090 IMMA.m16n8k32.s8 INT8 284 TOPS D[0:16, 0:16] = dot(A[0:4], B[0:4]) + C[0]

Can be converted into 

Fuse FuseFuse

Tutorial: Auto Tensorize



Hardware Aligned Layout Propagation

The search space is vast, with possible 
combinations in the order of O(N!) !
  ’ impossible to traverse all of them.

tDevice: Hardware abstraction
• Explicitly Define the preferred

access pattern for different
memory layers.

• Explicitly Define the access
pattern for instructions in warp
level.

Tile based program memory access Deduced Perfect Access Pattern

T0

T1

T2

T3

T7

T8

T9

T16

T17

T24

T25

ldmatrix: The 8 fp16 shared memory 
values accessed per thread.

T15 T31

T23

SHARED MEMORY

a

8

8

16

ldmatrix: The 8 values each 
thread receives in its registers.b

T31

MMA Tile

MMA Tile

Warp Tile
Warp Tile

T0 T1

T2 T3

T15T14

T16 T17

T30 T31

Deduced Perfect Access Pattern

SHARED MEMORY

Hardware-Aligned

Optimal Layout

Deduction
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Define Computation with DSL (TIR)
@tvm.script.ir_module 
class MyModule: 
    @T.prim_func 
    def main(a: T.handle, b: T.handle, c: T.handle): 
        T.func_attr({"global_symbol": "main", "tir.noalias": True}) 
        A = T.match_buffer(a, [M, K], dtype="float16") 
        B = T.match_buffer(b, [N, K], dtype="float16") 
        C = T.match_buffer(c, [M, N], dtype="float16") 
 
        for i, j, k in T.grid(M, N, K): 
            with T.block("B"): 
                vi, vj, vk = T.axis.remap("SSR", [i, j, k]) 
                with T.init(): 
                    C[vi, vj] = T.float16(0) 
                C[vi, vj] = C[vi, vj] + \ 
                    A[vi, vk].astype("float16") * B[vj, 
vk].astype("float16") 
 

Specify a          “   -  9 ” 

Bottom-up hardware instruction selection
Depth Type Instructions

0 Compute 2xmma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16
1 Shared Load ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16
2 Shared Store st.shared.v4.u32
3 Global Load ld.global.v4.u32

@I.ir_module 
class Module: 
    @T.prim_func 
    def main(A: T.Buffer(), B: T.Buffer(), C: T.Buffer(): 
        __fetch2shared() 
        for ax0, ax1, ax2, ax3 in T.grid(1024, 1024, 16, 16): 
            with T.block("A_shared_warp"): 
                v0, v1, v2, v3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3]) 
                A_shared_warp[v0, v1, v2 * 2 + v3 // 8, v3 % 8] = A_shared[v0, v1, v2, v3] 
        for ax0, ax1, ax2, ax3 in T.grid(1024, 1024, 16, 16): 
            with T.block("B_shared_warp"): 
                v0, v1, v2, v3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3]) 
                B_shared_warp[v0, v1, v2 * 2 + v3 // 8, v3 % 8] = B_shared[v0, v1, v2, v3] 
        for ii, jj, kk, i, j, k in T.grid(1024, 1024, 1024, 16, 16, 16): 
            with T.block("B"): 
                vii, vjj, vkk, vi, vj, vk = T.axis.remap("SSRSSR", [ii, jj, kk, i, j, k]) 
                with T.init(): 
                    C_warp[vii, vjj, vi % 8 * 4 + vj % 8 // 2, vj // 8 * 4 + vi // 8 * 2 + vj % 2]  
                            = T.float16(0) 
                C_warp[vii, vjj, vi % 8 * 4 + vj % 8 // 2, vj // 8 * 4 + vi // 8 * 2 + vj % 2]  
                    +=  A_shared_warp[vii, vkk, vi * 2 + vk // 8, vk % 8]  
                        * B_shared_warp[vjj, vkk, vj * 2 + vk // 8, vk % 8] 
        for ax0, ax1 in T.grid(16384, 16384): 
            with T.block("C_warp"): 
                v0, v1 = T.axis.remap("SS", [ax0, ax1]) 
                C[v0, v1] = C_warp[v0 // 16, v1 // 16,  

The memory-intensive operator for
 re-layout the input.

 B[vi // 16, vj // 16, vi % 16, vj % 16] =  
    A[vi // 8 * 8 + vi % 4 * 2 + vj % 16 // 8, vj // 16 * 16 + vi % 8 // 4 * 8 + vj % 8] 
 
 B[vi // 16, vj // 16, vi % 16, vj % 16] =  
    A[vi // 8 * 8 + vi % 4 * 2 + vj % 16 // 8, vj // 16 * 16 + vi % 8 // 4 * 8 + vj % 8] 
 

Compute-Intensive Op with Perfect Layout Access

Advantages and Limitations
• Advantages: Eliminates the search space for data layout in tensor 
scheduling, requiring only derivation.

• Limitations: Requires pre-conversion of data layout, which introduces 
conversion overhead.

Hardware Aligned Layout Deduction

Hardware Aligned Layout Propagation

Deduce



Resolve the Limitation with Tile-Graph

Latency Hiding Method Based on Tile-Graph Constant Folding for Static Weights: Arrange weights during the 
compilation phase to hide latency.

Forward Propagation of Data Layout Between Operators: The 
preceding operator can process and write back data directly in the 
layout expected by the subsequent operator during execution, 
thereby avoiding additional data layout conversion operations 
between the two operators.

O DI’  : W     : High Performance Operator Fusion with Tile-Graph

Discussion: The performance Impact of introducing
Layout Transformation Fusion.

Compute-intensive operators and memory-intensive 
operators are connected through registers

Compute-intensive operators are connected through 
shared memory.



Why we need to introduce Layout Propagation?

MMA

Copy A

A B

Copy B

im2col

dequant

weight

SMEM

Deduced Layout

Example of a Compute Flow
With Layout Propagation

Deduced Layout

Deduced Layout
from Ladder

Im2col and dequant will transform the layout as well

The deduced layout should be able to propagate across different compute blocks !

propagate

1. The dimensions of the instructions
and computations do not align.

Challenges

2. There are several peripheral 
computations outside the core MMA 
instructions.

3. Complex mapping relationships 
introduced by nonlinear 
transformations (dequant, group-
scale).



Methodology: Three different layout propagate modes

lambda i, j: (i // 8 * 8 + j // 8 * 4 + i % 8 
// 2, i % 2 * 8 + j % 8)

lambda i, j: (j // 8 * 8 + i // 8 * 4 + j % 8 
// 2, j % 2 * 8 + i % 8)

Case 1: Linear Transformation
Transpose as an example

Propagate

INT4 INT4 INT4 INT4

FLOAT16 FLOAT16 FLOAT16 FLOAT16

Case 2: Compressed Transformation
Dequantize as an example

lambda i, j: (i // 8 * 8 + j // 8 * 4 + i % 
8 // 2, i % 2 * 8 + j % 8)

lambda i, j: (i // 8 * 8 + j * 4 + i % 8 // 
2, i % 2)

Propagate

qweight

weight



Methodology: Three different layout propagate modes

F16 F16

INT4 INT4 INT4 INT4

Group wise scaling

Quant weight

Case 3: non-injective Transformation
Dequantize as an example

lambda i, j: (i // 8 * 8 + j // 8 * 4 + i % 8 
// 2, i % 2 * 8 + j % 8)

Cannot Propagate

BitBLAS implements auto-layout propagation rules based on three patterns.

BitBLAS implements auto-layout propagation 
rules based on three patterns.

https://github1s.com/microsoft/BitBLAS/blob/main/bitblas/gpu/matmul_analysis.py


Resolve Conflict: Layout Auto Differentiation

MMA

Copy A

A

B

dequant

SMEM

Scale

Copy B

Propagated Layout

B[j, k] = B(f(j, k))

Non-injective!
   ’   k)] = S [j, k]

 ’ represents inverse transformation of Layout.

Add

Conv

Add

Layout Conflict with correlative Buffers

tTile B

tTile A
Conflict

Conflict

Add

Conv

Add

tTile  ’+ tTile B

tTile AtTile A

Resolve Conflict With CSE

  
  

 

  

  

 
 

 

  

  

  

  

                                         

Layout Auto Differentiation

10% performance
Comparable perf with TensorRT



Latency-Oriented Optimization Search Policy

                                       

                 

        

    

            

        

            
        
      

     

                 

                                                

                                    
                                       

                                 
                                

                                
                               
              

The abstraction enlarges the scheduling space for DNN computation and opens a new trade-off 
between memory footprint efficiency and latency efficiency.

When the storage of the system is sufficient, additional searches are made for the latency 
overhead of performing type conversions at each stage and the configuration with the shortest 
latency is selected



System Overview of Ladder/BitBLAS
BitBLASSystem for end2end optimizations

Runtime Kernel Library

matmul_config = bitblas.MatmulConfig(
                    A_dtype="float16", 
 W_dtype="int4",  
 accum_dtype="float16", 
 out_dtype="float16", …
)
Matmul = bitblas.matmul(matmul_config)

Example Usage

Has been used for 1.58bits Model

Operator
Auto Tensorization

Layout Propataion

Hardware aware Tuning

CUDA
Source

Executable

Now integrated into vLLM, AutoGPTQ, 
EfficientQAT, HQQ!
Shipped to Ads team for BitNet deployment!

Ladder



Vectorized Dequantization with Weight Interleave
Conventional Dequantization

32bit = 8xint4b

8xint32b or 8xint8b

8xfloat16

Type Convert Instructions

Logic Inst.

Introducing a certain amount of computation can become a 
bottleneck in performance Especially on devices with fewer bits 
and weaker compute cores (for example, cuda core on a100).

int4b

int32

float16

                        

                        

                  

              

        
    

      
      

Extension for BitBLAS To Support More Fewer Bits (1/2b to 8/16b)
And we also provide Other Fast Dequantize: FP8->FP16

BitBLAS: Chunk Level Interleave

            

      

        

            

      

        

    

                  

                

                

Vectorized Dequantization

              9                 

While   ’ hard to be extended
into fewer bits

                       
        

    
 

       
        

    
              

           

                                                            

                               

                                      

Tutorial: Fast Dequantize



Fast Decoding Performance on A100 GPU



Fast and Efficient Dynamic Kernel Tuning

Building a universal library is challenging.

Different shapes (architectures) prefer different kernel config.

Only one dimension is dynamic within 
LLM Compute Workload.

Kernel_256x256x32

Kernel_16x64x32

Kernel_32x128x32

…

M=26
N=1024,K=1024

Kernel Database

Tutorial: Fast Codegen

Tutorial: Dynamic Codegen
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End2End Performance of Ladder A100 80G

- WFP16AFP16 : ~ 1.1x/1.1x avg. speedup over Welder/TensorRT

- WINT4AFP16 (GPTQ) ~ 2.3x avg. speedup over vLLM-WINT4AFP16

- WINT1AINT8 (BitNet): up to 8.8x speedup over Ladder- WFP16AFP16 (on BLOOM-176B-BS1SEQ1)



Operator Performance of BitBLAS
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System Performance Scaling Up

Decode: Memory Intensive Prefill Compute Intensive
Quantized kernels can benefit from 
reduced memory bandwidth usage.

Quantized kernels can benefit from more 
efficient hardware instructions.

                                                                            

                                                                               



Summary Challenges From The Community

We proposed universe Tensor Abstractions and 
Schedule Primitives to enable ml compiler 
explore tensor scheduling 

We proposed a hardware-aligned Memory 
Layout Propagation Strategy to auto inference 
Memory Layout and eliminate the overhead.

We proposed a bit-nearest and instruction 
aligned tensorization strategy.

We introduce a Latency-oriented Search Policy

We designed Ladder and BitBLAS.

Kernel Compilation takes too much time even 
though with Kernel Database.

Schedule Based Implementations make it hard 
for developers to extend BitBLAS.

Schedule Based Implementation is hard to 
describe complex ops(like stream-k, flash Atten)

Though bitblas has been integrated into 
vLLM, AutoGPTQ, HQQ

  ’          ing TileLang to handle issue 2 and 3 
as triton is hard to describe dequant related items.

Runtime Kernel Library may lead to uncomfortable user 
experience.

Tutorials

Tutorials

https://github.com/LeiWang1999/MSBitBLAS/tree/tl_kernel_implementation/tutorials


Oct 26, 2024

Thanks for watching
https://github.com/microsoft/BitBLAS

More info, reproduce, reach:

OSDI     ’ Ladder

More detail, download:

https://github.com/microsoft/BitBLAS
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