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ABSTRACT

Convolutional Neural Networks (CNNs) have achieved a significant amount of success in solving a wide range

of classification problems. Traditionally, embedded CNN application prototypes have been implemented on

CPU or GPU based machines due to short development time, but sacrificing performance and energy effi-

ciency. However, recent advancements in high level synthesis (HLS) tools and PYNQ development boards

are making the prototyping effort on FPGA comparable to that of CPUs or GPUs, making them a good op-

tion for prototyping embedded CNN applications. This report presents a fast FPGA prototyping framework,

which is an Open Source framework designed to enable fast deployment of embedded CNN applications on

FPGA platforms. My framework provides HLS CNN layers, which can be parameterised for a wide range of

network specifications and provides state-of-the-art performance at low power consumption. By comparing

with PYNQ ARM CPU implementation, my CIFAR-10 prototype shows up to 43x acceleration, while maintain-

ing a 73.7% classification accuracy and 1.953 frames/J energy consumption.
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ACRONYMS AND ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

ASIC Application-specific Integrated Circuit

BLAS Basic Linear Algebra Subprograms

BRAM Blocked Random Access Memory

BNN Binarised Neural Network

CNN Convolution Neural Network

CPU Central Processing Unit

DAG Directed Acyclic Graph

DSP Digital Signal Processor

DMA Direct Memory Access

FPGA Field-programmable Gate Array

GPU Graphics Processing Unit

HLS High Level Synthesis

HPC High-performance Computing

HTC High-throughput Computing

IP Intellectual Property

NIN Network in Network

NN Neural Network

OS Operating System

PYNQ Python Productivity for Zynq

RAM Random Access Memory

ReLU Rectified Linear Unit

RTL Register Transfer Language

SDF Synchronous Dataflow

SDFG Synchronous Dataflow Graph

SoC System on a Chip
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1. INTRODUCTION

Deep Neural Networks have delivered state-of-the-art performances in both vision and auditory systems, showing

its potential to revolutionise our existing technologies. The research on one Deep Neural Network, CNN, has been

increasing over recent years. Similar to ordinary Neural Network (NN), CNN consists of interconnected neurons

with learnable weights and biases. CNN specialises in processing images, which means CNN can exploit some

properties of images to optimise its performance, making it more efficient in processing large image databases.

Figure 1.1: Illustration of a simple CNN, showing a convolution layer, a pooling layer, and a fully-connected layer

[1]

The implementation of CNN on embedded systems allows real-time classification tasks to be performed more

flexibly. Machine learning models can be trained off-line and then implemented onto embedded system, so

that the system only needs to focus on improving the throughput of forward propagation (i.e. deployment). The

development of high performance embedded CNN systems can have significant implications onto many areas of

research, such as ADAS, UAV and robotics.

Figure 1.2: Embedded FPGA applica-

tion: Aerotenna FPGA-based

microwave radar sensors [2]

Meanwhile, CNN is also challenging the processing capability of our

existing computing systems. For example, a well-known model, LeNet-

5, requires 3.8∗106 operations in one forward propagation per image.

Besides, real-time CNN classifications, such as video processing, require

very high throughput to support a high processing frame rate. These

requirements lead to the development of CNN hardware accelerators.

[3] [4]

FPGA is a very promising accelerator for CNN. FPGA is an integrated

chip which allows for gate-level hardware reconfiguration on the field.

It contains a huge amount of small logic elements (or look-up-tables)

which can be programmed into various and numerous digital modules

for different custom applications. Below lists some of the major advan-

tages of implementing embedded CNN applications on FPGA.
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• FPGA’s strong parallel-processing capability can be used to effectively exploit the inert parallelism in CNN

algorithm, accelerating the CNN deployment on embedded systems.

• The reconfigurability of FPGA allows for the synthesis of hardware accelerators specially designed for

each CNN model, allowing for higher optimisation in resource usage and greater flexibility for users’

customisation in various applications.

• Research has shown that FPGA is able to provide high data processing throughput at lower power con-

sumption than existing platforms. [5][6] Minimising power consumption is especially important for many

embedded systems that have limited power supply (such as UAV and Automotive applications).

PYNQ is a development board which has recently been published by XilinxTM. The board features a Zynq XC7Z020

FPGA, with 512MB DDR3/FLASH memory and Dual-Core ARM Cortex-A9 CPU. PYNQ is a special FPGA platform

which is very friendly to software engineers with limited experiences in working with CPU-FPGA heterogeneous

architecture. The board provides a Linux Ubuntu 15.10 operating system with complete Python compiler support,

and includes Python drivers that execute API for FPGA bitstream download and data transmission. It is a platform

that aims at inviting engineers to explore the limitless design possibilities of FPGA.

Figure 1.3: Embedded AI: Object detection for drone tracking [7]

With PYNQ platform, this project attempts

to make the CNN deployment design flow

on FPGA similar to the deployment on CPU

or Graphics Processing Unit (GPU) plat-

forms, so that engineers can deploy CNN

on FPGA platform with intuitions that they

are familiar with. My framework makes use

of the Ubuntu OS on PYNQ’s ARM core to

execute Theano, which is currently one of

the most popular AI designing frameworks. I packaged my FPGA API into a Theano CNN layer function, which

can be instantiated in the same way as a Theano built-in function.

In my framework, engineers construct CNNs using my pre-synthesised FPGA layer IP which are parameterisable

to customise hardware resource usage. My IP designs employ the Synchronous Dataflow (SDF) model of compu-

tation as its basis.[8] Complete networks can be constructed as chains of layer IPs. With XilinxTM Vivado’s "Block

Diagram" utility, engineers can build CNNs graphically by simply chaining up IP blocks.

For less resource-demanding CNNs, my framework will execute all weights and layers onto FPGA, maximising

the data parallelism in the form of heterogeneous computing. For more resource-demanding networks, my

frameworks supports SDFG partitioning, where the entire network has been sliced into multiple sub-graphs, and

each sub-graph being processed on FPGA sequentially.
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Section 2 Project Scope explains the project’s scope, detailing the project deliverable, main design choices and

performance metrics. Section 3 Background demonstrates my research for the key technical aspects of the

project and the relevant published works which my project can learn from. Section 4 Implementation - Overall

Architecture gives an overview on the overall hardware architecture of my project. Section 5 Implementation -

ARM Linux OS Side provides the technical details of my high level interface design, including the Python library

interface and CPU-FPGA API. Section 6 Implementation - Zynq FPGA Side details the FPGA-side data streaming

interface protocol design and IP library design. Section 7 Testing describes the test settings, including validation

procedure and experimental setup for designing prototypes. Section 8 Performance Evaluation describes the

three prototypes that I have constructed using my framework, demonstrating the performance of my framework.

Section 9 Conclusion and Further Plans provides conclusions and further plans. Section 10 About My Experi-

ence of Working with PYNQ summarises my experience of working with PYNQ platform. Section 11 User Guide

provides a sample user guide explaining to engineers how to use my framework.

2. PROJECT SCOPE

This project aims at constructing a fast FPGA prototyping framework for high performance CNN deployment

on PYNQ platform. I will design a framework that not only minimises engineers’ efforts in prototyping CNN on

FPGA platform, but also optimally utilises both the ARM core and FPGA hardware, delivering state-of-the-art

CNN deployment speed, accuracy and power consumption.

My target platform is XilinxTM PYNQ Development Board. With a powerful Zynq FPGA and a Dual-Core ARM-

Cortex A9 processor running Linux OS, PYNQ is an ideal platform for constructing my framework, which requires

both an FPGA for delivering High-performance Computing (HPC) tasks, and a Linux OS for high-level-language

design interface.

As the final deliverable of my project, the framework should include the following elements.

• A library of FPGA IP designs packaged in the format of block designs, which will be used by engineers as

building blocks for their CNN models.

• A Vivado project which synthesises engineers’ CNN model into FPGA bitstream.

• A Python function on PYNQ ARM Linux OS which deploys the CNN model on FPGA.

Since in embedded CNN deployment large amounts of operations are required for a prolonged period of time,

this task can be categorised as a High-throughput Computing (HTC) task, and the metric for speed performance

will be throughput, in operations per second (OP/s).

In order to achieve this goal, below are some of the design considerations which I will attempt to address

throughout my project. 1

1It is important to note that my framework does not provide solutions for automated FPGA design space optimisation. This means that

users are required to hand tune parameters such as memory tiling factors and Blocked Random Access Memory (BRAM) usage for
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• CNN Framework on PYNQ OS: Which currently available CNN framework to be implemented on PYNQ

Linux OS as high level interface? The Linux machine has limited Random Access Memory (RAM), storage

and processing power. An ideal framework should both demand less RAM and less computing power, and

provide better support on user-customised layers (our FPGA layers will be instantiated as user-customised

layers).

• FPGA Data Transfer Protocol: Currently PYNQ drivers support two data transfer protocols, namely Memory-

Mapped Input Output (MMIO) and DMA. Which protocol will provide higher throughput?

• Quantisation: Should data and weights be quantised for FPGA computation? What are the gains and losses

in data quantisation?

• Memory Architecture: Should data and weights be stored on-chip (BRAM) or off-chip (DDR)?

• FPGA layer IPs Parametrisability: When designing FPGA layer IPs, trade-offs exist between speed and

BRAM usage, and between speed and Digital Signal Processor (DSP) usage. How to provide users with the

freedom to control these trade-offs?

• Scalability: What happens when a CNN is too resource-demanding to fit in my FPGA platform?

The above design decisions will be made based on analysis of experimental results. As proof-of-concept, FPGA-

accelerated CNN prototypes will be developed, which aim at delivering state-of-the-art deployment speed and

accuracy on supervised image classification benchmarks, using my fast FPGA prototyping framework. The

performance evaluation of these prototypes will be focusing on resource usage, throughput, power consumption

and accuracy. Below are the performance evaluation metrics that my project will focus on.

• Resource Usage: The amount of FPGA on-chip resources utilised.

• Throughput: The amount of computations that can be carried out at a given period of time, often measured

in MACC operations per second (OP/s).

• Power Efficiency: The sustained energy usage per frame.

• Accuracy: Supervised classification accuracy of existing performance benchmarks.

The above aspects will be considered when evaluating on the performance of this framework. Finally, future plans

on this project will be made based on the performance evaluation.

Section 3 will explain in detail my background research on the various design questions posed in this section.

optimal FPGA implementation. My framework, however, do simplify users’ optimisation efforts by providing appropriate generic

parameters.

11



3. BACKGROUND

This section demonstrates the background research on some of the key technical aspects relevant to the project.

Various related works on these topics have been listed, which my design will refer to when making key design

decisions.

Section 3.1 explains the fundamental algorithm of CNN. Section 3.2 shows why a high level interface is needed,

as well as research on how to implement a user-friendly high level interface. Section 3.3 lists the advantages of

implementing CNN on FPGA platforms, as well as my research on how to optimally implement embedded CNN

on FPGAs based on existing published works. Section 3.4 details my research on the topic of CNN quantisation.

Section 3.5 justifies my choice of PYNQ as my project’s hardware platform.

3.1. WHAT IS A CNN?

The basic algorithm of a CNN is very similar to a common neural network, since they are both built from large

amounts of neurons performing dot-product with learn-able parameters (also named "weights"), and they both

require back propagation for training and forward propagation for testing. Different from a common neural

network, a CNN assumes that the input data will always be in the form of images. With that assumption, the

forward propagation of CNN becomes equivalent to a 2D convolution, which imply strong and deterministic

parallelism that can be utilised for acceleration.

A typical CNN consists of many different layers that operates on the feature map sequentially. Each subsequent

layer reads input features from output of previous layer. A convolution layer performs 2D convolution, a fully-

connected layer performs dot-product, a Rectified Linear Unit (ReLU) layer performs activation thresholded at

zero, and a pooling layer performs down-sampling by taking maximum or average. Finally, the last layer (normally

a fully-connected layer) outputs an array of probabilities for the corresponding classes. The most frequently-used

CNN layers are convolution layers, pooling layers, ReLU layers and fully-connected layers.
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Figure 3.1: Illustration of 2D convolution [9]

CONVOLUTION LAYER: A convolution layer performs

2D convolution between input feature map and

weights. Weights are arranged in small parameter

patches named kernels. Normally, the output of convo-

lution layer often directly connects to a non-linearity

layer to perform non-linear activation. Common non-

linear activations include ReLU, sigmoid and linear

functions.

f out put
i =

ni n∑
j=1

f i n
j ~ gi , j +bi , (1 ≤ i ≤ nout ) (3.1)

In 2D convolution, there exhibits strong parallelism.

Firstly, each pixel in a 2D convolution feature map is

computed from dot-product between weight kernel

and a patch of input feature map. Each dot-product is independent from each other, suggesting that all dot-

products can be computed in parallel. Secondly, within each dot-product, all the multiply-accumulation opera-

tions are independent and hence can be computed in parallel as well.

POOLING LAYER: A pooling layer down-samples output feature map by outputting the maximum or average of

sub-areas of output feature map. Pooling operation can significantly reduce the computation complexity of the

network, as well as effectively preventing over-fitting. Equation 3.2 shows max-pooling operation.

f out put
i , j = maxp∗p


f i nput

m,n · · · f i nput
m,n+p−1

...
...

f i nput
m+p−1,n · · · f i nput

m+p−1,n+p−1

 (3.2)

FULLY-CONNECTED LAYER: A fully-connected layer performs dot-product between input feature map and weights.

Normally, fully-connected layers are placed at the end of the network to reduce the dimensions of output feature

map.

f out put =W f i n +b (3.3)

RECTIFIED LINEAR UNIT (RELU) LAYER: A ReLU layer performs linear activation but thresholded at zero. ReLU

is a special activation function which becomes very popular in CNN mainly because of two reasons. Firstly,

according to research done by Krizhevsky et al[10], ReLU can significantly accelerate the speed of convergence

in the stochastic gradient descent algorithm, reducing training time. Secondly, as compared to tanh sigmoid or

logistic sigmoid functions, the computation of ReLU is significantly simpler. [9] In my FPGA layer IPs, instead of a

13



standalone ReLU layer, each layer IP will have the option of whether to directly rectify each output data as the

output feature map streams out, with zero extra latency cost.

f out put = M AX ( f i n ,0) (3.4)

Figure 3.2: Left: Rectified Linear Unit (ReLU) activation function, which is zero when x < 0 and then linear with

slope 1 when x > 0. Right: A plot from Krizhevsky et al. [10] paper indicating the 6x improvement in

convergence with the ReLU unit compared to the tanh unit. [9]

In this project, since my target platform is embedded system, I always assume that CNN models are pre-trained

off-line. Hence, my framework will only focus on CNN deployment (i.e. forward propagation), and CNN training

(i.e. back propagation) do not fall into the scope of my project[11]. Section 6 will explain how each CNN layer

algorithm has been implemented in the FPGA layer IP library.

3.2. FRAMEWORK HIGH LEVEL INTERFACE DESIGN

3.2.1. WHY DO WE NEED ANOTHER HIGH LEVEL CNN FRAMEWORK?

One fundamental aim of this project would be to allow engineers to quickly and easily prototype embedded CNN

applications. To achieve that, I propose a high-level-language user interface using existing CNN frameworks, so

that engineers who are familiar with deploying CNN on CPU and GPU platforms can quickly get used to deploying

CNN on FPGA platform using my framework.

To achieve that, I decided to install one existing CNN framework onto the PYNQ Linux machine, and package my

FPGA-accelerated layers into user-defined functions (or "customised layers") of existing CPU/GPU based CNN

frameworks. This way, the network deployment process using my platform will be similar to deployment process

that engineers are already familiar with.
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Currently, the most popular CNN frameworks include Caffe, TensorFlow and Theano. Section 5 will compare

these three frameworks and choose the one which best satisfies my project requirements.

3.2.2. EXISTING FPGA CNN FRAMEWORKS AND THEIR HIGH LEVEL INTERFACES

Stylianos I. Venieris and Christos-Savvas Bouganis propose fpgaConvNet which reads CNN descriptions from

existing networks such as Caffe and Theano, and maps the CNN onto a particular FPGA-based platform. [5] The

developed framework first takes as input a CNN model in the high-level, domain-specific scheme, then performs

fast design space exploration by manipulating the SDF CNN model and finishes by generating a synthesisable

Vivado High Level Synthesis (HLS) hardware design. Their designs achieve up to 1.62x the performance density of

hand tuned designs. However, their design focuses more on an automated design methodology for the mapping

of CNN onto FPGA platforms. After the FPGA bitstream has been generated, engineers still need to construct

CPU-FPGA data transmission architecture, which requires extensive FPGA knowledge. I propose to design a

framework which can simplify this process.

Nallatech’s FPGA Acceleration of Convolutional Neural Networks has proposed framework with FPGA-CNN layer

incorporated in Caffe framework. [1] User needs to only change the description of the CNN layer in the Caffe XML

network description file to target the FPGA equivalent. This enables software designers to continue working on

framework that they are familiar with, hence reducing the prototyping time. This concept satisfies my design

requirements, and hence my framework will utilise similar model, targeting PYNQ platform.

3.2.3. INSTALLING CNN FRAMEWORKS ON EMBEDDED ARM CHIPSET

I also reviewed literatures regarding how to install Caffe, TensorFlow and Theano onto ARM chipset. Some tutorials

regarding installing CNN frameworks onto Raspberry PI has been used on PYNQ board because they both use

similar ARM chipset[12][13]. Some tutiroals also explain how to solve Boost library version clashing issues[14],

and guide me to implement Caffe/Theano Python 3 support (currently Caffe does not officially support Python 3,

but PYNQ requires Python 3 libraries to interface with FPGA)[15].
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3.3. FPGA LAYER IP LIBRARY DESIGN

3.3.1. WHY IS FPGA GOOD AT ACCELERATING CNN?

Figure 3.3: Computation time distribution of individual layers of AlexNet, on both GPUs and CPUs for the forward

pass[16]

There has been many research regarding accelerating CNN on various accelerators based on FPGA, GPU, and

even Application-specific Integrated Circuit (ASIC). FPGA has attracted more and more attentions due to its high

energy efficiency, fast development cycles, and reconfigurability[17].

The majority of computation latency in one CNN forward propagation (deployment) lies in the convolutions.

Figure 3.3 is the time distribution for CPU and GPU forward propagation (from research done by Yangqing Jia[16]).

This shows that the convolution layer takes the majority of the CNN forward propagation processing time[18],

and accelerating 2D convolution is the key to achieving more acceleration in the overall deployment.

The 2D convolution implies strong data parallelism. As shown in Section 3.1, in 2D convolution every multiply-

accumulation operation can be processed in parallel. This parallelism can be easily exploited in an FPGA architec-

ture. Four related works which provide outstanding performance are compared in the following section.

3.3.2. RELATED WORKS ON ACCELERATING 2D CONVOLUTION ON FPGAS

One design proposed by Chen Zhang et-al. implements a single processing engine style architecture by loading

batches of input onto on-chip memory, followed by pipelining and unrolling 32-bit floating point multiply-

accumulations in tiles.[17] This maximises the parallelism in the algorithm, but utilises a significant amount of

on-chip BRAMs and DSPs, making it unsuitable for the limited resources on PYNQ board (4.9 MB on-chip BRAM

and 220 DSP slices).

Another design proposed by Di Carlo S. et-al. performs convolution using line buffers and windows. This design

was originally for 2D convolution, but can also perform 3D convolution with some minor changes. At each clock

the buffer shifts down and a new pixel streams in. A window captures some pixels in the buffer and all pixels in
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the window perform MAC in parallel. This model fits the AXI4-streaming I/O interface very well, using minimum

memory bandwidth and maximum data throughput[19].

Sharan Chetlur et-al. propose a design which uses CPU to firstly convert convolution into matrix multiplica-

tion using a function named "im2col" [20]. This design was originally proposed for CPU and GPU architecture.

The FPGA acceleration of matrix multiplication has been extensively researched and high acceleration can be

easily achieved. However, the input data stream is not just the input feature map, but the output of "im2col"

function. This is especially problematic since the size of the feature map scales up significantly after "im2col",

which is essentially a memory unrolling process. Hence huge memory transfer latency is expected with this design.

Stylianos I. Venieris and Christos-Savvas Bouganis’ fpgaConvNet proposes a framework which interprets CNN as a

streaming application. The proposed framework employs the SDF model of computation as its basis, where both

sliding window unit (i.e. im2col) and matrix multiplication are processed on-chip using streaming interface. This

model effectively eliminates the excessive off-chip memory transformation overhead from the previous design.

Moreover, a streaming interface means output feature map from each layer does not need to be buffered on

on-chip memory, hence reducing memory footprint. The streaming data interface enables the FPGA to exploit

data parallelism in the form of pipelining. Thus, the SDF model proposed by this model is most ideal for my

project specifications.

To sum up, the first two designs aim at maximising parallelism on FPGA architecture using the architecture of

a single processing engine, but their use of floating point numbers result in very high on-chip memory usage.

Besides, having a single processing engine means that feature maps need to be constantly transmitted in and

out of DDR memory. Especially, the size of the feature map expands significantly in the middle of the CNN

SDFG, meaning that even longer data transfer latency from DDR memory is expected. Both problems make

them less suitable for an embedded system. The third design appears to solve that problem, but results in more

off-chip memory operations and hence more latency. The fourth design’s SDF streaming IO model provides good

performance with minimal memory footprint, and in my framework I decide to implement this concept. Section

6 provides the technical details on how this concept has been implemented in hardware.

17



3.4. DATA QUANTISATION

3.4.1. WHY DO WE QUANTISE CNN?

Figure 3.4: Graph Showing Dataflow of

Quantized CNN Layers[21]

Recent research has shown that actually CNN is rather insen-

sitive to noises in the input data and weight, and the pre-

cision of CNN forward propagation does not have to be 32-

bit floating point. Fixed point number representations are suf-

ficiently accurate, because CNN forward propagation can be

very robust to quantisation noises[21][22][23][24]. CNN mod-

els can be trained in 32-bit floating point for improved preci-

sion, and then quantised in deployment for acceleration and

memory compression. Fixed point representation can signif-

icantly reduce both the on-chip memory usage and DSP us-

age.

3.4.2. EXISTING CNN QUANTISATION SCHEMES

Figure 3.4 shows the data flow when fixed-point quantisation of a part

of the network has been implemented. Similar data flow can be imple-

mented before and after FPGA IP layers. There is a trade-off between

accuracy and bitwidth, and the optimal bitwidth needs to be selected.

Besides using constant fixed-point bitwidth, research has shown that the dynamic quantisation of CNN can

minimise bitwidth usage, while at the same time maximise accuracy. For example, Ristretto performs automated

CNN quantisation using dynamic quantisation. [25]

XilinxTM FPGA also has INT8 DSP hardware architecture acceleration design, which outperforms other FPGAs

when accelerating the MACC operations in INT8[22]. However, at the moment, Vivado HLS cannot exploit this

feature. It can only be exploited by hand-tuned HDL.

In the recent FPGA 2017 conference, XilinxTM published their implementation of binarised neural network in-

ference. By utilizing a novel set of optimizations that enable efficient mapping of binarised neural networks to

hardware, they implemented fully connected, convolutional and pooling layers, with per-layer compute resources

being tailored to user-provided throughput requirements. Currently, this design can provide some of the fastest

classification rates reported on classification benchmarks. With binarised data representation, the FPGA design

requires minimal BRAM and DSP, thus achieving high scalability.[6]

In FPGA implementation of CNN, quantisation can significantly reduce the resource usage, ensuring better

scalability and more parallelism. Section 6.2 will compare the different quantisation schemes and select the most

optimal design for CNN deployment.

18



3.5. PYNQ PLATFORM

3.5.1. WHAT IS PYNQ PLATFORM?

Traditional FPGA-CPU and FPGA-RAM interfaces requires designer to have knowledge on FPGA hardware im-

plementations. This has created a barrier for potential software designers to try and use FPGA accelerator into

their applications. This barrier has restricted the growth of the FPGA developer community, resulting in slower

development of FPGA applications. The main counterpart of FPGA accelerator, GPU, on the other hand, has

been welcoming software developers with C-like programming languages and frameworks (such as OpenCL[26]),

resulting in the formation of a very successful GPU developer community and productive supply chain of GPU

applications.

Nowadays, the FPGA industry has raised its focus on creating more user-friendly development frameworks. Re-

cently, XilinxTM has published PYNQ project[27]. It is an innovative framework where embedded engineers can

instantiate pre-synthesised FPGA IPs (or "Overlays") in Python, without digging into hardware level.

This platform is especially suitable for implementing embedded CNN system. The CPU core on PYNQ has built-in

Linux Ubuntu 15.10 OS. This makes PYNQ capable of running software CNN frameworks such as Theano com-

pletely on the CPU. Layers of Theano which are parallelisable will be dispatched into PYNQ pre-synthesised

"Overlays" and instantiated in standard Theano syntax. Thus, FPGA acceleration of CNN on Theano can be

achieved without users doing extensive Register Transfer Language (RTL) design. Besides, the Zynq FPGA on

PYNQ has 53200 LUTs, 4.9MB (140 36KB blocks) of BRAMs, and 220 DSPs (18 x 25 MACC). These on-chip resources

are powerful enough for engineers to implement most of common CNNs.

3.5.2. ALTERNATIVE PLATFORMS FOR CNN DEPLOYMENT

There are also many research on implementing CNN systems on embedded GPU boards. One of the most popular

implementation platform would be Nvidia’s Jetson mobile GPU board. Jetson is an embedded system equipped

with Nvidia GPU. Many developers have been trying to deploy CNN on this framework, and have achieved great

performance. However, Nvidia Jetson board is more expensive than PYNQ-Z1 board. Meanwhile, PYNQ-Z1

FPGA is more power-efficient than GPU systems, which is crucial to embedded applications with limited power

supply.[28][11][6] Table 3.1 compares FPGA performance with embedded GPU, in scene labelling task, showing

that FPGA platform achieves higher power efficiency and lower hardware cost.[5]

Implementation Device Sustained Performance Performance per Power Cost

fpgaConvNet Zynq-7000 XC7Z020 12.73 GOp/s 7.27 GOp/s/W £65

Scene Labelling TK1 76.00 GOp/s 6.91 GOp/s/W £196.14

Table 3.1: Performance Comparison with embedded GPU [5]
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3.6. SUMMARY

This section demonstrates my background research on key technical aspects of the design. Section 4, 5 and 6 will

talk about the design implementation, detailing how the design considerations proposed in Section 2 have been

approached using design space analysis.

4. IMPLEMENTATION - OVERALL ARCHITECTURE

Figure 4.1: The overall hardware architecture of my design

Figure 4.1 summarises the overall architecture of my framework. The architecture of my design can be separated

into two parts, namely ARM Linux OS implementation and Zynq FPGA implementation. The left half of the

diagram shows the ARM CPU side which is controlled by Python on Linux OS. This side controls the high level

interface of my framework, where the framework loads input feature maps to DDR memory and outputs the

classification results. The right half of the diagram shows the Zynq FPGA side which is hardware-configured by

overlay IP. This side performs high speed forward propagation of CNN in SDF paradigm.

Section 5 and 6 explains the ARM Linux side and Zynq FPGA side of implementation, respectively. Both halves

of the implementation aim at delivering a fast prototyping framework for high performance CNN deployment.

Hence, design decisions have been made to minimise engineers’ deployment efforts, while in the meantime

delivering optimal resource usage efficiency, throughput, power efficiency and accuracy.
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5. IMPLEMENTATION - ARM LINUX OS SIDE

In order for more engineers to get used to my framework, I choose some of the most popular frameworks (reported

to date) as my framework’s high level interface. Caffe, TensorFlow and Theano are some of the most popular CNN

frameworks which target CPU/GPU based platforms. Table 5.1 provides a systematic comparison among these

three frameworks.[29]

Framework Creator Open

Source

Platform Written In Interface Has Pre-

trained

Models

Caffe Berkeley Vision

and Learning

Centre

Yes Linux, Mac OS

X, Windows

C++ Python,

MATLAB

Yes

TensorFlow Google Brain team Yes Linux, Mac OS

X, Windows

C++, Python Python,

C/C++, Java,

Go

Yes

Theano Universite de Mon-

treal

Yes Cross-platform Python Python Through

Lasagne’s

model zoo

Table 5.1: Deep learning framework by name[29]

All three frameworks are open source, which means I have free access to them. They all support Linux platform,

and all supports Python interface. This means they should all be able to operate on the Linux OS on PYNQ. Hence,

in order to give a closer look at these frameworks in action, I attempted to install all three platforms on PYNQ.

5.1. FRAMEWORK INSTALLATION AND SETUP ON PYNQ LINUX OS

5.1.1. CAFFE

The first framework that I tried to install was Caffe. In the installation process I met several

errors, which I was able to solve. The first error was Boost library installation. Linux apt-

get install command was not able to install correct version of Boost library for ARM core

cross-compile gcc compiler. Hence, I downloaded the correct version of Boost from its official

website. A more difficult error was that as for the day that I wrote the report, Caffe did not have

official support for Python 3. However, the data transmission API that PYNQ provided only supported Python 3.

Hence, I manually installed protobuf 3.0.0, OpenCV 3, and LAPACK, and changed the Caffe installation makefile

script to link to these new components. Eventually, I successfully installed Caffe onto PYNQ Linux machine.

Having installed the Caffe framework, I proceeded to setting up a small testbench which instantiates a FPGA-

accelerated CNN layer from Caffe. For testing purpose, the FPGA-accelerated layer had only one convolution

layer IP. (For details on FPGA layer IP design, please see Section 6) The testbench includes a testbench setup script,
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"single_conv_layer.py", which calls for the setting up and execution of the testbench network in Caffe syntax, and

a CNN configuration file, "myconvnet.prototxt" Protobuf configuration file, which declares the CNN structure

and specifications. For contents of "single_conv_layer.py" and "myconvnet.prototxt", please see Appendix A.

In "myconvnet.prototxt", the layer named foga_conv_im2col is a customised Caffe layer that I added into the

Caffe library, which contains API that executes the FPGA convolution layer IP. In Caffe terminology, this customised

layer is named Python Layer, mainly because the layer is written in Python. However, since Caffe built-in library is

written in C++, when Caffe calls the Python Layer, there will be some small overhead in executing Python compiler,

making the performance less desirable. Besides, having embedded Python script inside a C++ library makes the

overall library more difficult to maintain or upgrade.

5.1.2. TENSORFLOW

The second framework that I attempted was TensorFlow. I installed TensorFlow

on PYNQ with no errors. However, whenever I tried to execute a CNN with ses-

sion.run() command, I always got the "Illegal Instruction" error due to chipset

clash. When I consulted with engineers in XilinxTM, they mentioned hacks which

would enable PYNQ to execute TensorFlow. However, by that time I had already

switched to Theano and there was no time left for me to attempt TensorFlow any

more.

5.1.3. THEANO

The third framework that I attempted was Theano. I installed Theano onto PYNQ using apt-get

install command with only one line of script (pip install Lasagne==0.1). To further improve

on the user interface of CNN deployment, I also installed Lasagne on top of Theano. Lasagne

is a lightweight library to build and train neural networks in Theano, providing more succinct

and intuitive code presentation than Theano. Lasagne also published a sub-repository named

Recipes, which provides examples and tutorials explaining how to quickly and easily deploy

pre-trained Caffe CNN models. I can easily build my testbench based on these tutorials. In

Listing 1, a LeNet-5 CNN was implemented using Lasagne syntax. In Listing 2, an identical

network model has been implemented using my framework, with the same syntax. From both Listing 1 and 2,

I can conclude that using Lasagne, CNNs can be declared with simple and readable Python codes, providing

user-friendly design interfaces.

Since Lasagne has good support for user-designed customised layers, I can simply use Lasagne customised CNN

layers as my framework’s high level interface. These layers can be instantiated identically to Theano built-in layer

functions, providing performance which is as good as built-in layer functions. Based on a tutorial project provided

by Lasagne, a testbench project was designed to test on the functionality of my framework. It consists of an

iPython Notebook script (modified from Lasagne tutorial) and a customised Lasagne CNN layer which contains
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API that executes the FPGA convolution layer IP. Listing 2 shows how my framework declares an FPGA-accelerated

CNN model.

Listing 1: Lasagne LeNet Configuration

net = {}

# Input image with dimension 28 x 28

net[’input’] = InputLayer((None, 1, 28, 28))

net[’conv1’] = ConvLayer(net[’input’],

num_filters=20, filter_size=5,

nonlinearity=linear)

net[’pool1’] = PoolLayer(net[’conv1’],

pool_size=2, stride=2, mode=’max’,

ignore_border=False)

net[’conv2’] = ConvLayer(net[’pool1’],

num_filters=50, filter_size=5,

nonlinearity=linear)

net[’pool2’] = PoolLayer(net[’conv2’],

pool_size=2, stride=2, mode=’max’,

ignore_border=False)

net[’ip1’] = DenseLayer(net[’pool2’],

num_units=500, nonlinearity = rectify)

net[’ip2’] = DenseLayer(net[’ip1’],

num_units=10, nonlinearity = None)

net[’prob’] = NonlinearityLayer(net[’ip2’],

softmax)

Listing 2: My Framework’s LeNet Configuration

net = {}

# Input image with dimension 28 x 28

net[’input’] = InputLayer((None, 1, 28, 28))

net[’lenet’] = FPGA_LENET(FPGA_net[’input’])

# FPGA_LENET is the customised layer which

wraps the API, calling for the execution

of FPGA LENET IP

net[’prob’] =

NonlinearityLayer(FPGA_net[’lenet’],

softmax)

5.1.4. EVALUATION

Having attempted all three frameworks, I evaluated these frameworks based on three fundamental aspects,

namely installation difficulty on PYNQ, support for customised layer, and simplicity in design interface. Table

5.2 compares these three frameworks. From Table 5.2, I conclude that Theano (with Lasagne) requires the least

installation efforts, while providing the most intuitive design interface and the best supports on embedded CNN

deployment as well as customised layer design. Hence, Theano with Lasagne is chosen as the most optimal

framework for my project.
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Framework Installation Difficulty on

PYNQ

Support for Customised

Layer

Simplicity in Design Inter-

face

Caffe Moderate. Requires Compi-

lation which is more than 10

hours long

Low. Embedding Python

function leads to extra

Python interpreter latency

Moderate. layer instantia-

toin in Protobuf text format

TensorFlow NA. Failed to install High Simple

Theano

(Lasagne)

Very Easy. Installed with a

single line of command. No

need for compilation

Very high. Well-designed

customised functions’ per-

formances are comparable

to built-in functions

Very simple. Directed Acyclic

Graph (DAG) constructed in

Python functions

Table 5.2: Evaluation of the listed CNN frameworks

5.2. API FOR FPGA-CPU DATA TRANSMISSION

Figure 5.1: Block diagram of the minimal working hard-

ware for DMA. The DMA output stream is

looped back into input stream[30]

One crucial task of CPU-side framework is to

be able to call for data transmission from DDR

memory to FPGA on-chip BRAM. This process

requires driver which is able to link to FPGA-

connected ports and delegate to FPGA hardware

for data transmission. Fortunately, PYNQ pro-

vides two types of such drivers, namely MMIO and

DMA.

MMIO stands for memory-mapped input/output. This

is a rather straight forward memory access protocol. In

short, a pointer is initialised with the physical address

of the FPGA control/status register(s) (i.e. port(s)),

and the driver simply loads and stores to the FPGA

device through that pointer. MMIO driver is simple

to implement and is hence commonly used in ap-

plications with small amount of memory transmis-

sions.

DMA stands for direct memory access. In DMA, data transmission is controlled and scheduled by an independent

controller on FPGA. It focuses on transmitting data at maximum throughput possible, while CPU and other FPGA

IPs can focus on other tasks. AXI DMA specialises in transmitting a stream of data in AXI4-Streaming protocol,

between FPGA and DDR memory. AXI DMA focuses on boosting the throughput of transmitting a large stream of

data, and is capable of supporting a throughput of one data word per clock cycle. [30]

For CNN deployment, large amounts of data transformations need to be performed at very high speed between

24



FPGA and DDR memory, and a combination of AXI4-Streaming protocol and DMA can provide higher data trans-

mission throughput. Hence, in my project, DMA instead of MMIO has been selected as the FPGA data transfer

architecture.

My implementation of PYNQ DMA API is largely inspired by Dr. Peter Ogden’s "Decorator" design, which provides

very clear tutorials on how to construct AXI DMA data transmission architecture on PYNQ.

6. IMPLEMENTATION - ZYNQ FPGA SIDE

The traditional workflow for designing FPGA IPs involve designing component modules by hand using RTL. While

fine-tuned RTL can usually provide the best performance with minimum resource usage, large hand-written

RTL designs usually have low readability and high difficulty in maintenance. Besides, writing RTL requires larger

amount of development time, which is not feasible given the time limit. Hence, in this project I have decided to

design FPGA IPs using Vivado High-Level Synthesis (HLS).

Vivado HLS accelerates IP creation by enabling C, C++ and System C specifications to be directly targeted into

XilinxTM All Programmable devices without the need to manually create RTL. Supporting both the ISE and Vivado

design environments Vivado HLS provides system and design architects alike with a faster path to IP creation.[31]

Since my framework aims at fast prototyping of CNN, the FPGA IP design must be modular and parametrisable,

delivering maximum reconfigurability and scalability while requiring minimal user efforts to re-design the network

model. Apart from simplicity in prototyping, my hardware design should aim at maximising speed performance,

exploiting maximum level of parallelism.

My framework is based on the SDF paradigm. In this paradigm, a network is represented as a directed graph

named SDFG. In SDFG, nodes represent computations and lines represent data streams. Fundamentally, the

principle of SDF is that whenever input data are available for a node, the node will immediately start processing

and generating outputs. When the entire network is constructed using SDF, each component IP on the graph can

independently drive the data streaming, forming a heterogeneous streaming architecture. With streaming IO,

output data immediately streams out instead of being buffered in on-chip memory, hence saving the memory

footprint of the entire network. [5]

So far, my framework provides FPGA IPs including convolution layer, pooling layer, fully-connected layer and

ReLU layer. These layers all employ the SDF model of computation as its basis.[8] Complete networks can be

constructed as chains of these three layer IPs. With XilinxTM Vivado’s "Block Diagram" utility, engineers can build

CNNs graphically.

Figure 6.1 shows how my framework maps LeNet-5, a popular CNN, onto FPGA, using my FPGA layer IPs. Given

a CNN topology, engineers will select corresponding FPGA IPs from my IP library, place them onto one Vivado

Block Diagram, chain them into one SDFG, and finally customise the IPs with appropriate parameters (such as
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Figure 6.1: Illustration of LeNet-5, showing how my framework deploys CNN on FPGA using SDF. ABOVE: Struc-

ture of LeNet-5. BELOW: CNN constructed as a chain of graphical block diagrams in my framework.

[32]

kernel dimensions, IO channels, and memory tiling factors).

Technical details of my FPGA IP designs will be explained in this section.

6.1. DATA STREAMING ARCHITECTURE

My data I/O uses AXI4-Streaming interface, which supports a streaming speed of one word per clock cycle. For

each layer IP, at each clock cycle the IP takes in a new word of input feature map, and outputs whenever a new

output word is ready. Thus, each node on the SDFG drives the data stream forward independently, forming a

heterogeneous computing architecture where all IPs in SDFG process data independently.

Figure 6.2 shows the waveform of AXI4-Streaming control signals. In my design, three control signals are required,

namely TLAST, TVALID, and TREADY.

• TLAST is active when the last word of the current data stream is being transmitted. In data streaming

applications, TLAST is required for AXI4 slave to know when the last word of the stream has been transmitted,

so that the AXI4 slave knows when to terminate.

• TVALID is active whenever an AXI4 master is transmitting valid data to AXI4 slave.

• TREADY is active when an AXI4 slave is ready to receive new data from AXI4 master.

Vivado HLS will automatically manage TVALID and TREADY signals, but designer should manually specify when
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TLAST should be active.

Figure 6.2: AXI4-Streaming Interface Waveform [33]

Since all IPs are connected with the same data stream, the overall data streaming throughput will be dominated

by the IP with the slowest throughput. This IP will be known as the throughput bottleneck. Bottleneck in a SDF

design could either be in data transmission between DDR and FPGA, or in one IP with the lowest data streaming

throughput (even lower than data transmission throughput).

6.2. QUANTISATION

6.2.1. 32-BIT FLOATING-POINT FORMAT

In the first version of my FPGA layer IPs, I implemented convolution layers using 32-bit floating point data format.

However, the resultant hardware resource usage is too large for PYNQ’s Zynq FPGA. This section details the

resource usage analysis of 32-bit floating-point format.

For resource analysis, I designed a convolution layer using 32-bit floating-point format, with input feature map of

dimension (1,3,32,32) (i.e. 1 3-channel 32x32 image) and kernel of dimension (32,3,5,5) (i.e. 32-output 5x5 kernels)

at stride=1 and padding=2 (for implementation details on convolution layer IP, please see Section 6.3). This

convolution can be converted into matrix multiplication of size (1024x75)*(75x32), and one forward-propagation

of this layer contains 2.4576M MACCs. Table 6.1 shows the resource usage for this layer.

This layer is considered to be a small CNN layer, however from Table 6.1 I can see that the resource usage, in

particular BRAM and DSP, is over one-third. Thus, with 32-bit floating point data format, PYNQ will not have

enough hardware resources to accommodate more than three such layers on chip, meaning that the design will

not accommodate complex CNN models.

6.2.2. FIXED-POINT DATA QUANTISATION

As compared to 32-bit floating point arithmetic, fixed-point arithmetic on FPGA requires significantly less DSP

and LUT, and most of the simple fixed-point arithmetic operations can be executed in one clock cycle. However,

there is a trade-off relationship between the fixed-point quantisation bitwidth and classification accuracy, since
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Resource Usage Available Percentage Usage (%)

BRAM 54 140 38.6

DSP48E 76 220 34.5

LUT 1803 53200 3.39

Table 6.1: Floating point convolution layer resource usage comparison ((1,3,32,32) ~ (32,3,5,5), generating

(1,32,32,32) output)

data quantisation results in data precision loss and consequently classification accuracy loss. In order to explore

the optimal data format, I implemented the same convolution model mentioned in previous section, with floating-

point and different bitwidths of fixed-point data formats, and compares their resource usage. For accuracies of

various data formats, I used Philipp Gysel, Mohammad Motamedi and Soheil Ghiasi’s published classification

accuracies. Figure 6.3 show this trade-off relationship between FPGA DSP48E usage and classification accuracies

both in LeNet-5 and CIFAR-10.

For LeNet-5, from Figure 6.3 (left), it can be concluded that 8-bit and 16-bit fixed-point data formats provide

the most optimal resource-accuracy trade-off. In order to reduce BRAM usage, 8-bit instead of 16-bit fixed point

format will be used for LeNet-5 deployment. For CIFAR-10, from Figure 6.3 (right), it can be concluded that 16-bit

fixed-point data formats provide optimal resource-accuracy trade-off. Hence, 16-bit fixed-point data format will

be used to implement CIFAR-10 model.

Figure 6.3: Trade-off between DSP usage and classification accuracies, with different data formats. Left: LeNet-5.

Right: CIFAR-10.

6.3. FPGA LAYER IPS

Three CNN layers, namely convolution layer, pooling layer, and fully-connected layer, have been constructed

using Vivado HLS. ReLU layer was included in each of the three layers, as each layer IP has the option of whether

to directly rectify each output data as the output feature map streams out.
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6.3.1. CONVOLUTION LAYER

Figure 6.4: Block design of sliding window unit IP fol-

lowed by matrix multiplication IP. AXIS reg-

ister slices are placed to improve timing

The convolution between the input feature map

X and the kernel W can be achieved by ex-

panding the feature map into a large 2D ma-

trix, M„ followed by matrix multiplication be-

tween M and unrolled 2D version of M . The

first stage where X unrolls into M is named

"im2col", or in the streaming interface, "sliding win-

dow".

SLIDING WINDOW UNIT: As the name suggests,

"im2col" expands the input feature map into column vectors, where each column vector contains the patch of

input feature map which will perform dot-product with kernel. Although this operation essentially expands the

memory usage of input feature map by replicating data, this operation has effectively transformed convolution

into matrix multiplication. Matrix multiplication has many efficient implementations (for example, for CPU

I have Basic Linear Algebra Subprograms (BLAS) API, and for FPGA Vivado HLS has introduced optimisations

to implement matrix multiplications[34]), which I can take advantage of. The Sliding Window Unit has been

implemented in Algorithm I.

Algorithm I Sliding Window with Streaming Data Interface

Read layer parameters contained in the first several data words

if Status is "Load Weight" then

Pass input data stream to the subsequent layer

else {Status is "Deploy"}

Stream in the input feature map and stream out subspaces of input feature map

end if

With AXI4-Streaming interface, "im2col’s" memory footprint problem can be effectively eliminated. The outputs

of "im2col" (i.e. "sliding window"[6][5]) block can immediately stream out to the subsequent block in SDFG,

hence there is no need for buffering the output feature map.
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Figure 6.5: Illustration of "im2col" in action [35]

Figure 6.5 shows how the sliding window block expands the input feature map. Based on the specifications of

the CNN layer (specifically, kernel dimension, padding dimension and stride), sliding window block generates

column vectors which correspond to patches of input feature map which will perform dot-product with kernel.

Note that up to the data of report, the framework only supports a stride of 1. In the future the framework will

be updated to support more striding values. My implementation of sliding window unit is based on the sliding

window unit function provided in Xilinx’s BNN-PYNQ reference design. [6]

INTERLEAVING: From Figure 6.5, I can see that each column vector contains multiple channels of input feature

map. Since addition is commutative, the order in column vector does not affect the output, as long as it corre-

sponds to the unrolling order in kernel. Hence, in order to reduce buffer usage, the framework "interleaves" the

weights off-line. Interleaving of input feature map will be performed on FPGA IP on-the-fly with no additional

latency cost. [6]

Figure 6.6 shows how interleaving is performed. By default, input feature maps’ dimensions are arranged in

(batch size, input channels, height, weight) order, and kernels’ dimensions are arranged in (output channels,

input channels, height, weight) order. In both arrangements, input channels come before height and weight,

and hence if I unravel these matrices into data streams, almost the entire feature map needs to be buffered

before the buffer contains one entire patch. On the other hand, with interleaving, I transpose these dimensions

such that input channel becomes the last dimension. In this way, after unravelling, data will be streaming across

channels. This means that a buffer of size at most K∗W ∗C is required, significantly reducing buffer memory usage.
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Figure 6.6: Effect of "interleave" operation on input feature map, where "H", "W", "C" and "K" refers to height,

width, channel and kernel dimension respectively. The red arrow indicates the fundamental data

streaming order, showing that with interleaving the amount of data that needs to buffer reduces.

MATRIX MULTIPLICATION: The second stage of convolution layer is matrix multiplication. XilinxTM Vivado HLS

has extensive support for implementing AXI4-Streaming matrix multiplications on Zynq FPGA. As shown in Figure

6.5, in matrix multiplication A ∗B = C , each value in C is generated by dot-product between a row of A and a

column of B . This dot-product can be implemented in parallel on FPGA architecture, and pipelined so that one

output value can be generated per clock cycle. The algorithm for the matrix multiplication layer IP is shown in

Algorithm II.

Algorithm II Matrix Multiplication with Streaming Data Interface

Read layer parameters contained in the first several data words

if Status is "Load Weight" & Target Layer ID Matches Current Layer ID then

Instantiate BRAM for weight storage

Write weights into BRAM

else if Status is "Load Weight" & Target Layer ID Does Not Match Current Layer ID then

Pass input data stream to the subsequent layer

else {Status is "Deploy"}

Load one row of input feature map into input buffer

Compute dot-product between input buffer and each row of weight buffer in pipeline II=1

end if
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Figure 6.7: Illustration of how FPGA can accelerate matrix multiplication to high throughput

Figure 6.7 explains how FPGA accelerates matrix multiplication by parallel computing and pipelining. Assum-

ing that the matrix multiplication is of dimension (M ∗3)∗ (3∗N ). Figure 6.7 (1) shows the digital hardware

generated on FPGA. The memory banks (1, 3, 5) store the input feature map and the memory banks (2, 4, 6)

store the weights. Both input feature map and weight has been partitioned into smaller memory banks so that

multiple input data can be fetched in parallel. At each clock cycle, three new pairs of operands for dot-product

are fetched into registers A1-3 and B1-3, and computed in parallel using a tree of multipliers and adders. The

computation process consists of many register stages, and instead of waiting for the current computation to

finish, memory fetching continues at the next clock cycle, creating a data processing pipeline (as shown in Fig-

ure 6.7 (2)). Hence, output data will be generated at high throughput, leading to high overall data processing speed.

Figure 6.7 (1) also illustrates that since each BRAM bank has limited memory ports, in order to simultaneously

fetch multiple operands, input data must be stored in different memory banks. Otherwise, extra latency is required
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for memory banks to fetch multiple data, leading to pipeline stalling. For details of trade-off analysis between

memory bank partitioning, speed and resource usage, please see Section 6.6.

6.3.2. POOLING LAYER

Figure 6.8: Block design of pooling layer IP. AXIS register

slices are placed to improve timing

Pooling layer performs down-sampling on input fea-

ture map, by outputting maximum or average of sub-

graphs. In AXI4-Streaming interface, pooling can

be performed in similar concepts to sliding window

unit. My implementation of pooling layer is based

on the pooling layer design in Xilinx’s BNN-PYNQ ref-

erence design, which provides a maximum through-

put of one output word per clock cycle. [6] My max-

pooling layer IP implementation is shown in Algorithm

III.

Algorithm III Max Pooling with Streaming Data Interface

Read layer parameters contained in the first several data words

if Status is "Load Weight" then

Pass input data stream to the subsequent layer

else {Status is "Deploy"}

Stream in the input feature map and stream out the maximum of each subspace of input feature map

end if

6.3.3. FULLY-CONNECTED LAYER

Fully-connected layer performs dot-product between input feature map and weights. Hence, in the off-line, a

fully-connected layer can be easily converted into convolution layer.

Figure 6.9: Block design of fully-connected layer IP. AXIS

register slices are placed to improve timing

For example, consider an input feature map of di-

mension (512∗ 7∗ 7), which will go through a fully-

connected layer with 4096 outputs. The weights of this

fully-connected layer, which have dimension (4096∗
25088), can be reshaped into (4096∗512∗7∗7), form-

ing a convolution layer with kernel dimension = 7,

input channel = 512, stride = 1, and zero-padding =

0.[9]

Since a fully-connected layer can be converted into

convolution layer, my framework does not have IPs specifically for fully-connected layer. The algorithm of fully-

connected layer IP is identical to matrix multiplication as shown in Algorithm II.
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6.4. WEIGHT STORAGE AND RUNTIME RECONFIGURABILITY

A great deal of works exist in mapping CNN onto FPGA platforms, and these architectures have different memory

usage schemes. Works that are based on a single processing engine usually only stores one layer’s weights on

BRAM at each time. After that, weights will be reloaded for the subsequent layers.[17][11]. However, for SDF-based

architecture, all layers’ weights should be stored on BRAM at the same time. Otherwise, if any layer stalls for

memory operations, the entire data stream stalls, reducing overall performance.[5][6]

In order to simplify the CNN deploy efforts, my framework allows engineers to reload weights of any layer at run-

time. As shown in Algorithm II, before deployment, weights of each layer can be loaded and reloaded by asserting

the "Load Weight" status flag. This allows one FPGA CNN model to switch to perform multiple classification tasks

at runtime, by simply reloading weights.

Apart from reloading weights in the runtime, my framework can even allow one layer to reconfigure to different

dimensions when reloading weights. When weight reloads, my framework will transmit data stream which starts

with dimension parameters of the target layer, followed by weights data. By changing the dimension parameters

transmitted, the layer will reconfigure and change dimension. Figure 6.10 shows the format for data stream that

reloads weights. This data stream contains the ID for target layer, and it will be transmitted throughout the entire

SDFG. Layers with different ID will ignore the stream, and the target layer will reconfigure its dimensions based

on the parameters carried at the start of the stream, and reload its weights with the new weights. Details of each

parameter have been listed below.

Figure 6.10: Format of data stream, where the first 8 words are parameters of the target layer

• Layer ID is the unique ID that engineer needs to assign to each convolution or fully-connected layer (i.e.

layers with weights). At runtime weight reloading, layer ID is used to identify the target layer based on target

layer ID. A layer ID of 0 means the current data stream is input feature map, and the system is in deployment

mode.

• Batch refers to input image batch size. Many applications of CNN, such as Regional CNN (R-CNN) for

object detection, require the processing of one batch of images per execution.

• Conv means convolution kernel dimension.
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• IFMCH is the input feature map channel.

• IFMDim is the input feature map dimension.

• OFMCH is the output feature map channel.

• OFMDim is the output feature map dimension.

• PADDim is the padding dimension

All these parameters can be used to reconfigure the layer dimensions during weight reloading. Note that the value

of each parameter must not exceed the maximum memory size declared in compile-time parameters (See next

section for details).

6.5. COMPILE-TIME PARAMETRISABLE IP DESIGN

I aim to design my layer IP library such that engineers can apply my IP blocks to different CNN specifications, by

simply changing block generic parameters before Vivado synthesis. Generic parameters are RTL macro parameters

that can fine-tune and control the FPGA hardware design and resource usage before Vivado synthesis. I designed

my FPGA layer IPs such that engineers can effectively fine-tune the IP resource usage and parallelism with only a

small number of generic parameters, which can be easily defined either in a design header file or in Vivado Block

Design "Customise Block" panel. Details of compile-time parameters are listed below.

• BITWIDTH defines the number of bits used for fixed-point data quantisation.

• Layer ID defines the unique ID assigned to the current layer. Note that the layer ID 0 has been reserved as

flag to indicate the input data stream in deployment mode.

• FACTOR refers to the folding factor, which controls the trade-off between the IP’s level of parallelism and

on-chip resource usage.

• OUTPUT_RECTIFY is a switch that enables rectification at the output of current layer.

• ROW_MAX and COL_MAX define the on-chip memory size declared for weight storage. It is the maximum

size of weights that can be stored in current layer.

• POOL_SIZE defines the filter size of pooling layer.

• POOL_MODE is a switch that toggles between "max-pooling" and "average-pooling".

My initial plan was to construct FPGA layer IPs in customisable block designs, where engineers can fine-tune the

IP parameters on the block design GUI provided by XilinxTM Vivado. However, currently Vivado has not provided

support for designing user-customisable block design using HLS yet. So far, only project written in full HDL can

be packaged into customisable block design. Thus, in the current version of the framework, I can only parametrise

IPs using a header file.
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Figure 6.11: Illustration of concept for IP block design GUI

Figure 6.11 shows the "AXI4-Streaming Register Slice" block design customisation panel, where users can

parametrise the hardware implementation of this IP using such panel. This illustrates the same concept as

my proposed IP block design GUI. I hope that in the future I can use similar interface for my framework’s IPs.

6.6. FOLDING

Section 6.3.1 mentioned that due to limit in BRAM memory ports, weights must be stored in multiple BRAM banks

in order to fetch multiple data simultaneously, suggesting that the more BRAM banks I instantiate on-chip, the

more MACCs will be processed in parallel (and consequently using more DSPs). The instantiation of BRAN banks

can be controlled by changing the folding of matrix multiplication. Hence, by varying the folding factor there

exists a trade-off between resource usage and speed.

In XilinxTM Vivado HLS, memory bank partitioning is implemented via directive statements. Directives provide

extra hardware requirements to the compiler, allowing the creation of specific high-performance hardware imple-

mentations. [31]. The Listing 6.6 shows how the folded matrix multiplication is implemented in Vivado HLS.

In Listing 6.6, each column of input streams in and is stored in a temporary LUT-based memory A, while weights

are stored in BRAM-based memory B. Both A and B are partitioned into k folds, where k is the folding factor. For

each column of A and for each column of B, output is calculated as the dot-product between these two columns.

Each dot-product operation is folded into k folds, where each fold is computed in parallel, and all folds are

computed in complete pipeline (as explained in Setion 6.3.1).

Listing 3: Folding Matrix Multiplication
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////////////////////////////////////////////////////////

// BRAM Instantiation

static ap_int<wordwidth> A[A_COL_MAX][A_ROW_MAX], B[B_COL_MAX][B_ROW_MAX];

#pragma HLS RESOURCE variable=A core=RAM_S2P_LUTRAM

#pragma HLS RESOURCE variable=B core=RAM_S2P_BRAM

int const FACTOR = 5; // Folding Factor

// Memory objects A and B partitioned along dimension 2

#pragma HLS array_partition variable=A block factor=FACTOR dim=2

#pragma HLS array_partition variable=B block factor=FACTOR dim=2

// Matrix multiplication, A*B

L1:for (int ia = 0; ia < A_COL_MAX; ++ia)

{

L2:for (int ib = 0; ib < B_COL; ++ib)

{

ap_int<bitwidth> sum = 0;

L3:for(int ic = 0; ic < B_ROW_MAX/FACTOR; ++ic){

#pragma HLS PIPELINE II=1 // Pipelining at II=1

L4:for(int id = 0; id < FACTOR; ++id){

sum += A[ia][id*B_ROW_MAX/FACTOR+ic] *

B[ib][id*B_ROW_MAX/FACTOR+ic];

}

}

valOut.data = sum;

if (ia+iter*A_COL_MAX==A_COL-1 && ib==B_COL-1 && num_imag==batch_size-1)

valOut.last = 1;

else valOut.last = 0;

out_stream.write(valOut);

}

}

When folding factor increases, although more MACC operations are processed in parallel, more BRAMs and

DSPs are required as well. Hence, a trade-off between resource usage and speed exists when different folding

factors. Figure 6.12 shows this resource-latency trade-off, by comparing the latency and resource usage of a

(144∗500)∗ (500∗50) matrix multiplication using different folding factors. As shown in Figure 6.12, the folding

factor can effectively fine-tune the resource usage and speed performance across a very large dynamic range,

providing users with maximum freedom in customising the FPGA CNN implementation.
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Figure 6.12: Trade-off between convolution layer latency and resource usage, with different folding factors

6.7. TIMING CONSTRAINTS

In XilinxTM Vivado, when I design a pipeline chain of IPs interconnected with AXI4-Streaming interface, the

transition of many control signals are synthesised as asynchronous signals. This means that a long critical path,

with its length approximately proportional to the number of IP blocks along the design pipeline, has been created.

The result of this long critical path is a timing constraint violation. In order to remove this timing violation, AXI4-

Streaming Register Slice has been inserted between adjacent IPs in the data stream. AXI4-Streaming Register

Slice creates timing isolation between an AXI4-Streaming master and slave by inserting registered buffers of depth

2. Figures 6.4, 6.8 and 6.9 show how Register Slice IP has been inserted in the block design.

6.8. SDF SUBGRAPHS FOR LARGER CNNS

So far, I have only considered implementing a complete SDFG on FPGA in one go. However, the scalability of such

implementations will eventually be limited by the amount of on-chip resources. In order to further expand the

FPGA implementation’s scalability, I also explored the possibility of partitioning a SDFG into SDF subgraphs, and

implementing each subgraph at a time, using the FPGA’s reconfigurability. This method was originally proposed

by fpgaConvNet[5]. Below lists some advantages and disadvantages of such implementations.

• Advantages
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– Scalability: Theoretically, by partitioning the SDFG into SDF subgraphs, there is no upper limit in the

complexity of CNN models to be implemented.

– Parallelism: The FPGA implementation can focus on completely parallelising one partition at a time,

hence increasing the operation parallelism and throughput.

• Disadvantages

– Reconfiguration Time: Inevitably, such implementations will incur extra FPGA reconfiguration la-

tency. The more partitions I make, the more reconfiguration latency.

– Less Feasible for Real-time Applications: With such implementation, the increase in parallelism will

only outweigh the reconfiguration latency when the batch size (i.e. number of images processed at

one forward propagation) is large enough. For real-time applications, however, the input batch size is

likely to be quite low, for frame rate requirements.

– Memory Transfer Latency: Between adjacent SDF subgraphs, feature maps need to be transmitted to

and from the DDR memory for temporary storage, resulting in extra latency.

– Memory Footprint: As mentioned in the previous point, feature maps need to be temporarily stored

in DDR memory. In the middle of CNN, the size of feature map expands significantly. Since the PYNQ

DMA driver specifies that the maximum buffer size on DDR is around 8.4MB, the maximum batch

size is limited to a small value, meaning that the design will not be able to implement applications

requiring large input batch size, such as Regional CNN (R-CNN).

In order to evaluate the performance of SDF subgraph implementation, I implemented a prototype using such

implementation. For performance evaluation of SDF subgraph prototype, please see Section 8.3.

7. TESTING

This section describes two testing environments that I designed for the project, namely validation setup and

actual experimental setup.

7.1. VALIDATION

My project includes two stages of validation. The first stage is testing Vivado HLS C++ source using a C++ testbench

project. The second stage is testing the HLS generated RTL source using simulation in XilinxTM Vivado.

In order to progressively validate my framework, I firstly implemented testbench for single CNN layers, followed by

testbench for entire CNN SDFG. Towards the end of the project, I also implemented testbench for implementing

SDF subgraph (a portion of SDFG with multiple CNN layers).

XilinxTM Vivado HLS allows users to design C++ simulation testbenches and use them to test and debug the HLS

source codes. After each layer’s HLS source code had been designed in Vivado HLS as a C++ function, I designed
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appropriate software testbenches in C++, which interfaces with the layer IP function and tests for its correctness.

The testbench needs to be able to randomly generate input feature maps, as well as correct reference outputs

(sometimes known as "Golden Data") which checks my IP output’s correctness. In each test, 500 random input

data has been generated and tested with my IP source code, such that a wide range of corner cases have been

tested, ensuring functional reliability of the IP.

After my IPs passed the C++ simulation testbench, they will be packaged as Block Designs. These block designs

will be instantiated in XilinxTM Vivado, and a HDL simulation testbench simulating AXI4-Streaming I/O feature

maps has been prepared. There, the testbench validates the HDL generated from Vivado HLS, making sure that

the AXI4-Streaming I/O signals are correctly created, and the HDL behaves as expected.

7.2. EXPERIMENTAL SETUP

After relevant IPs are designed and validated, I used XilinxTM Vivado to synthesise bitstream, which was down-

loaded to PYNQ via Jupyter Notebook. Finally, my framework’s Lasagne customised layer links with the bitstream,

and the FPGA IP design is ready for deployment.

In order to design the testing environment for CNN deployment, I modified a tutorial provided by Lasagne Recipes,

which guides users into implementing a CNN model that classifies CIFAR-10 image dataset. This tutorial provides

CNN model specifications, pre-trained parameters, and testing images and labels. To test my framework, I simply

changed the script from calling Theano built-in CNN layer to calling my framework’s customised layer, allowing

me to quickly implement my FPGA-accelerated CNN, validate output correctness, and benchmark design perfor-

mances.

This report provides performance analysis of two forms of CNN deployments, namely complete SDFG implemen-

tation and SDF subgraph implementation. A number of prototypes have been created to demonstrate the FPGA

acceleration of CNN deployment. In order to compare with related works, performance benchmarks including

MNIST hand-writing digit dataset[36] and CIFAR-10 image classification dataset[37] have been used as testing

inputs. Popular CNN models such as LeNet-5[4] and CIFAR-10 (Caffe "quick" version[38]) were implemented with

my framework and used in performance analysis.

Some important technical specifications of the experimental setup have been listed in Table 7.1. Speed-up has

been measured between ARM CPU execution speed and my FPGA execution speed. For a detailed performance

evaluation, please see the next section.
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Dual Core ARM Cortex-A9 Zynq XC7Z020

Clock Frequency 0.8 GHz to 2 GHz 100 MHz

Number of processor cores 2 NA

Memory size 512 MB 4.9 MB (140 36KB BRAMs)

Table 7.1: Technical specifications of the hardware used for performance measurements

8. PERFORMANCE EVALUATION

This section evaluates three CNN prototypes implemented using my framework. The three prototypes are com-

plete SDFG implementation of LeNet-5 for MNIST hand-writing dataset, complete SDFG implementation of

CIFAR-10 (Caffe "quick" version) for CIFAR-10 image classification benchmark, and SDF subgraph implemen-

tation of Network in Network (NIN) for CIFAR-10 image classification benchmark. For LeNet-5 model topology

in Lasagne syntax, please see Appendix C.

8.1. COMPLETE SDFG IMPLEMENTATION - LENET-5

In this section, LeNet-5 has been completely implemented on FPGA using my framework. It will be used to classify

MNIST hand-writing digit dataset. Its performance will be benchmarked against ARM CPU performance using

Theano, as well as other related works on GPU and FPGA.

Using parameters provided by my framework, my LeNet-5 implementation has been hand-tuned for a balance

between parallelism and on-chip resource limitation. Table 8.1 lists the optimal compile-time parameters selected

for each tunable layer.

Layer ID Maximum Weight Height Maximum Weight Width Folding Factor

CONV_1 1 20 25 25

CONV_2 2 50 500 20

FC_1 3 500 800 25

FC_2 4 10 500 20

Table 8.1: Parameters hand-tuned for optimal LeNet-5 deployment

8.1.1. RESOURCE USAGE

Table 8.2 lists the FPGA on-chip resource usage for LeNet-5 deployment. It can be observed that the BRAM usage

has approached maximum capacity, showing that it has been fine-tuned for maximum resource usage, and this

framework will struggle with fitting larger CNN designs on board in complete SDFG. Hence, this framework may

have problem with the scalability of CNN model implementation, and Section 8.3 will propose SDF subgraph

implementation, which aims to solve this issue.
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Resource Usage Available Percentage Usage (%)

BRAM 139 140 99

DSP48E 130 220 59

LUT 38304 53200 72

Table 8.2: Resource Usage of LeNet-5 deployment as complete SDFG

8.1.2. THEORETICAL MAXIMUM THROUGHPUT

From Section 6.6, I know that the maximum number of parallel MACC operations per layer is equal to the layer’s

folding factor. Based on the folding factors provided in Table 8.1, I can estimate the maximum possible parallel

MACC operations per second.

T hr oug hput =
l ayer s∑

i
f oldi ng f actori ∗ clock f r equenc y (8.1)

= (25+20+25+20)∗100M (8.2)

= 9 GOP/s (8.3)

Thus, without considering the data stream scheduling, the maximum theoretical throughput that can be achieved

by my design should be 9 GOP/s. This is assuming that all MACC operators are computing at the same time.

However, in reality, since each layer has different throughput, the backward pressure will stall the entire data

stream, causing the actual performance to be worse than this.

8.1.3. ACTUAL THROUGHPUT AND BOTTLENECKS

I benchmark my framework’s LeNet-5 deployment latency against ARM CPU latency using Theano with Lasagne,

by timing the total CNN prototype deployment latency, including Python script interpreter initialisation time,

FPGA memory transfer time and FPGA execution time. Figure 8.1 plots their latency against input image batch size.

In general, my framework shows a sustained 30x speed up as compared to ARM CPU performance. Both plots

show upward slope. This is because with small batch sizes, the constant initialisation time (including Python

interpreter initialisation time) dominates the overall latency, whereas with bigger batch sizes, the increasing

execution latency dominates the overall latency. Hence, the larger the batch size, the higher the deployment

throughput.

Based on the latency plot in Figure 8.1, I can estimate the sustainable throughput of my framework. From

published analysis reports on LeNet-5, I know that for each input image, LeNet-5 performs 0.0038 GOPs. [8][4].

From Figure 8.1, I know that my framework can process at a sustained frame rate of 493.9 images per second.

Thus, the maximum sustainable throughput for my framework’s deployment of LeNet-5 is

0.0038 GOP/i mag e ∗493.9 i mag es/s = 1.877 GOP/s

42



Figure 8.1: Plot of deployment latency for CPU using Theano and FPGA using my framework, against input batch

size

It is important to note that the theoretical throughput is significantly higher than actual throughput that I have

obtained in my experiment results. This is because the entire data stream has been bottlenecked by the FC_1

layer. In deployment, FC_1 layer continuously takes in 800 input data, then halts the entire data stream for about

(800/25*500 = 16000) clock cycles, and the process repeats. Thus, this layer produces the greatest backward

pressure on the data stream, dominating the overall throughput.

Having shown that my framework provides good acceleration compared to ARM CPU performance, I also com-

pared my performance with other published performances on MNIST hand-writing dataset classification, using

Zynq FPGA. Table 8.3 compares my framework’s performance against some published LeNet performance bench-

marks on FPGA platforms of similar capacity.

From Table 8.3, it can be shown that my framework’s LeNet-5 deployment performance is at the same scale with

some published works, and my framework delivers state of the art performance.

8.1.4. POWER EFFICIENCY

For embedded system with limited power supply, it is important to minimise the energy spent per image clas-

sification. With a frame rate of 493.9 frames per second, and an average power consumption of 1.895 W, my

implementation of LeNet-5 achieves an energy usage of 493.9 f r ames/s/1.895 J/s = 260.6 f r ames/J .
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Design Platform Clock Frequency Sustained Throughput

(GOP/s)

Sina Ghaffari[39] & Saeed

Sharifian

Kintex-7 XC7K325T 150 MHz 0.216

fpgaConvNet (2016)[5] Zynq-7000 XC7Z020

System on a Chip (SoC)

100 MHz 0.48

Magnus Halvorsen[40] Zynq-7000 XC7Z020 SoC 100 MHz 0.988

My Framework Zynq-7000 XC7Z020 SoC 100 MHz 1.877

BNN on PYNQ[41] Zynq-7000 XC7Z020 SoC 100 MHz 32.76

Table 8.3: Comparison to other published performance benchmarks on LeNet-5 throughput

8.1.5. ACCURACY

In this LeNet-5 prototype, I implemented a fixed-point 8-bit quantisation in order to optimise on-chip resource

usage, which has resulted in some classification accuracy loss.

I implemented the LeNet-5 network to classify the testing dataset of MNIST hand-writing dataset, using a pre-

trained model. The testing dataset of MNIST hand-writing dataset contains 10000 hand-writing images which

are different from MNIST training dataset. With the MNIST testing dataset, the pretrained model can achieve an

accuracy of 99.11% using 32-bit floating-point format. Figure 8.2 shows that my FPGA implementation introduces

an accuracy loss of 0.24% due to 8-bit fixed-point quantisation.

This level of accuracy loss is reasonable considering that the FPGA implementation also achieved a sustained 30x

acceleration as compared to ARM CPU implementation.

Figure 8.3 and Figure 8.4 show examples of correct and wrong classifications in MNIST hand-writing dataset

respectively. The correctly-classified images have some common properties. Firstly, they are all clearly written

with solid lines. Secondly, they are mostly upright. Thirdly, they are not ambiguous as each of them do not show

similarity to other digits.

The wrongly-classified examples shown in Figure 8.4, on the other hand, are mostly not written in very solid lines.

Some of them are not upright (such as the "0" in ninth image). Finally and most importantly, almost all of them

are ambiguous and can be easily recognised as other digits. For example, in the first image, it is quite reasonable

for the classifier to recognise it as a "4" since many people do write "4"s like that.
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Figure 8.2: Comparison between CPU implementation accuracy using floating-point format, and FPGA imple-

mentation accuracy using 8-bit fixed-point format

Figure 8.3: Examples of correct classifications in MNIST dataset. Digits on the upper-left corner are correct labels,

and digits on the lower-left corner are predicted labels

Figure 8.4: Examples of wrong classifications in MNIST dataset. Digits on the upper-left corner are correct labels,

and digits on the lower-left corner are predicted labels

8.2. COMPLETE SDFG IMPLEMENTATION - CIFAR-10

Similar to previous section, CIFAR-10 model (Caffe "quick" version[38]) has been completely implemented on

FPGA using my framework. This model has been used to classify CIFAR-10 image set, and its performance will be

benchmarked in the same manner as in the previous section. The hand-tuned compile-time parameters for each

layer of CIFAR-10 are listed in Table 8.4. For CIFAR-10 model topology in Lasagne syntax, please see Appendix D.
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Layer ID Maximum Weight Height Maximum Weight Width Folding Factor

CONV_1 1 32 75 25

CONV_2 2 32 800 25

CONV_3 3 64 800 25

FC_1 4 64 1024 32

FC_2 5 10 64 16

Table 8.4: Parameters hand-tuned for optimal CIFAR-10 deployment

8.2.1. RESOURCE USAGE

Table 8.5 lists the FPGA on-chip resource usage for CIFAR-10 deployment. It can be observed that the DSP usage

has approached maximum capacity, and this framework will struggle with fitting larger CNN designs on board in

complete SDFG. Again, Section 8.3 will propose SDF subgraph implementation which aims to solve the scalability

issue.

Resource Usage Available Percentage Usage (%)

BRAM 102 140 73

DSP48E 198 220 90

LUT 43092 53200 81

Table 8.5: Resource Usage of CIFAR-10 deployment as complete SDFG

8.2.2. THEORETICAL MAXIMUM THROUGHPUT

The theoretical maximum possible parallel MACC operations per second is given by:

T hr oug hput =
l ayer s∑

i
f oldi ng f actori ∗ clock f r equenc y (8.4)

= (25+25+25+32+16)∗100M (8.5)

= 12.3 GOP/s (8.6)

Thus, without considering data stream stalling, the maximum theoretical throughput that can be achieved by my

design should be 12.3 GOP/s. The actual performance should be worse than this.

8.2.3. ACTUAL THROUGHPUT AND BOTTLENECKS

I benchmark my framework’s CIFAR-10 deployment latency against ARM CPU latency using Theano with Lasagne,

and Figure 8.5 plots their latency against input image batch size.
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Figure 8.5: Plot of deployment latency for CPU using Theano and FPGA using my framework, against input batch

size

In general, my framework shows a sustained 43x speed up as compared to ARM CPU performance. Both plots

show upward slope. Both plots are show upward sloping, suggesting that for both implementations, with small

batch sizes the python framework initialisation latency dominates total deployment latency, suggesting that

increasing batch size increases the deployment throughput.

From Figure 8.5, I can estimate that the sustained CIFAR-10 deployment frame rate is 132 frames per second.

From published analysis reports on LeNet-5, I know that for each input image, the CIFAR-10 model performs

0.0248 GOPs. [8][38]. Thus, the maximum sustainable throughput for my framework’s deployment of CIFAR-10 is

0.0248 GOPs/i mag e ∗132 i mag es/s = 3.2736 GOPs/s

The reduction in actual throughput compared to theoretical throughput is due to bottleneck in FC_1 layer. In de-

ployment, FC_1 layer continuously takes in 1024 input data, then halts the entire data stream for about (1024/32*64

= 2048) clock cycles to generate output stream, and then the process repeats. Thus, this layer produces the greatest

backward pressure on the data stream, stalling the data stream.

Although increasing the data throughput of FC_1 layer can effectively increase the overall throughput, since the

CIFAR-10 IP is already using up 90% of total DSP, there is little room for more parallelism in this layer. Partitioning

the SDFG into SDF subgraphs can allow FC_1 layer to utilise more resources and exploit greater parallelism, but at

the expense of reconfiguring the FPGA at runtime between adjacent SDF subgraphs. For details of SDF Subgraph

implementation, please see Section 8.3.
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Figure 8.6: Comparison between CPU implementation accuracy using 32-bit floating-point format, and FPGA

implementation accuracy using 16-bit fixed-point format

8.2.4. POWER EFFICIENCY

With a sustained frame rate of 132 frames per second, and an average power consumption of 2.063 W, my imple-

mentation of CIFAR-10 model achieves an energy usage of 132 f r ames/s/2.063 J/s = 63.98 f r ames/J , which is a

low power consumption per frame.

8.2.5. ACCURACY

In this CIFAR-10 prototype, I implemented a fixed-point 16-bit quantisation in order to optimise on-chip resource

usage, resulting in some classification accuracy loss.

Similar to LeNet-5 implementation, I implemented the CIFAR-10 model to classify CIFAR-10 image dataset, using

pretrained weights. The testing set of CIFAR-10 image set contains 10000 32x32 images which are different from

CIFAR-10 training dataset. With the CIFAR-10 testing dataset, the pretrained model weights can achieve a test

accuracy of 75.2% using 32-bit floating-point format. Figure 8.2 shows that my FPGA implementation incurs an

accuracy loss of 1.5% due to 16-bit fixed-point quantisation.

Again, as a trade-off between accuracy and deployment speed, this level of accuracy loss is reasonable considering

that the FPGA implementation also achieved 42x acceleration as compared to ARM CPU implementation.

Figure 8.7 and Figure 8.8 show examples of correct and wrong classifications in CIFAR-10 image dataset respec-

tively.
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Figure 8.7: Examples of correct classifications in CIFAR-10 dataset. Digits on the upper-left corner are correct

labels, and digits on the lower-left corner are predicted labels

Figure 8.8: Examples of wrong classifications in CIFAR-10 dataset. Digits on the upper-left corner are correct

labels, and digits on the lower-left corner are predicted labels

8.3. SDF SUBGRAPH IMPLEMENTATION

As explained in previous prototypes, implementing complete SDFG on chip results in a limit in scalability due to

limitation of FPGA on-chip resources. In order to address that, in the third prototype I attempted SDF subgraph

implementation. My third prototype partitions a complex CNN model and implements each SDF subgraph

individually on chip. During deployment, these SDF subgraphs will be executed sequentially, with the FPGA

reconfiguring at runtime for each new SDF subgraph.

The complex CNN model that I have implemented is named NIN for CIFAR-10 classification. In NIN, the network

is made of multiple micro CNNs as function approximators stacking together. Global average pooling instead of

fully-connected layers is used to avoid over-fitting[42]. With greater depth and complexity, NIN is reported to be

able to provide better classification accuracy as compared to my previous CIFAR-10 model (Caffe "quick" version).

For NIN-for-CIFAR-10 model topology in Lasagne syntax, please see Appendix E.
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Figure 8.9: The NIN for CIFAR-10 model topology (in Lasagne syntax) and my partitioning of this model for SDF

subgraph implementation

Figure 8.9 shows the structure of NIN model. Since my framework currently cannot implement dropout layer, my

partitioning will be primarily drawn to exclude dropout layers (which will be processed on ARM CPU). Besides,

the layer "conv2" and "conv3" require large amount of on-chip BRAMs, each of them will be implemented inde-

pendently as a single subgraph.

8.3.1. RESOURCE USAGE

Table 8.6 lists the FPGA on-chip resource usage for NIN-for-CIFAR-10 model deployment. Each partition is aiming

to achieve the maximum parallelism, utilising the maximum amount of resources in the process.

8.3.2. THROUGHPUT AND BOTTLENECKS

I benchmark my framework’s NIN-for-CIFAR-10 deployment latency against ARM CPU latency using Theano with

Lasagne, and Figure 8.10 plots their latency against input image batch size.

As shown in Figure 8.11, my framework shows a sustained 15.5x speed up as compared to ARM CPU performance.

However, this speedup is only achieved when the batch size is very high. As the batch size reduces, the speedup

drops significantly. This is because as the batch size becomes small, the fixed FPGA reconfiguration latency

dominates the overall execution latency, reducing the overall throughput. Thus, in real-time applications, where

the batch size tends to be smaller for high output frame rate, the throughput will be limited.

Another interesting observation from Figure 8.10 and Figure 8.11 is that my performance test stops when the

batch size is 40. This is because as batch size increases, the DDR buffer size required for temporary feature map
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Partition Resource Usage Available Percentage Usage (%)

P1

BRAM 63 140 45

DSP48E 154 220 70

LUT 23940 53200 45

P2

BRAM 140 140 100

DSP48E 35 220 16

LUT 14896 53200 28

P3

BRAM 52 140 37

DSP48E 128 220 58

LUT 18620 53200 35

P4

BRAM 140 140 100

DSP48E 62 220 28

LUT 17024 53200 32

P5

BRAM 52 140 37

DSP48E 128 220 58

LUT 16492 53200 31

Table 8.6: Resource Usage of NIN for CIFAR-10 using SDF subgraph implementation

storage increases. In forward propagation of CNN, the size of feature map can expand significantly in the process.

Since the maximum DDR buffer for DMA, as defined by PYNQ DMA driver, is around 8.3MB, the maximum batch

size is limited to 40 input images. This batch size restriction significantly limits the design’s potential for higher

throughput.

From Figure 8.10, I can estimate the sustained deployment frame rate as 3.81 frames per second. I know that

for each input image, NIN-for-CIFAR-10 model performs 0.2224 GOPs [42]. Thus, the maximum sustainable

throughput for my framework’s deployment of CIFAR-10 is

0.2224 GOPs/i mag e ∗3.81 i mag es/s = 0.8477 GOPs/s
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Figure 8.10: Plot of deployment latency for CPU using Theano and FPGA using my framework, against input batch

size

Figure 8.11: Plot of speedup of my framework (compared to ARM CPU implementation), against input batch size

In conclusion, although SDF subgraph implementation has expanded my framework’s scalability, making my

design capable of accommodating deeper and more complex networks, it also significantly reduced the through-

put performance and increased the memory footprint for buffering intermediate feature maps. Consequently,
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Figure 8.12: Comparison between CPU implementation accuracy using 32-bit floating-point format, and FPGA

implementation accuracy using 8-bit fixed-point format

the design has lower throughput for real-time applications with smaller input batch size, and is incapable of

implementing applications with large batch size (such as Regional CNN (R-CNN)).

8.3.3. POWER EFFICIENCY

With a frame rate of 3.81 frames per second, and an average power consumption of 1.951 W, my implementation

of CIFAR-10 model achieves an energy usage of 3.81 f r ames/s/1.951 J/s = 1.953 f r ames/J , which is a low power

consumption.

8.3.4. ACCURACY

Finally, I implemented the NIN-for-CIFAR-10 model to classify the same CIFAR-10 image dataset as previous test,

using pretrained weights which achieve a test accuracy of 89.6% using 32-bit floating-point format[42]. My design

implements the model with a fixed-point quantisation of 8-bit to save BRAM and DSP resource usage, losing some

accuracy in the process. Figure 8.12 shows the accuracy loss of FPGA implementation due to 8-bit fixed-point

quantisation. Note that this implementation has achieved significant accuracy improvement as compared to

previous CIFAR-10 model (Caffe "quick" version), which has a testing accuracy of 0.737. Hence, with SDF subgraph

implementation, my framework is able to implement deeper and more complex CNNs, which can achieve better

classification accuracy.
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8.4. SUMMARY

To sum up, the three tests that I have implemented in this section demonstrate the following characteristics of my

framework:

HIGH SPEED: All three prototypes demonstrate high speed performance and operation parallelism, in the form

of high throughput performance. In the LeNet-5 test, my implementation has been compared with published

benchmarks, showing that my framework is capable of delivering state-of-the-art throughput performance, with

appropriate tuning of design parameters.

LOW POWER CONSUMPTION: The prototypes show low power consumption per frame, making them suitable for

embedded applications.

EFFICIENT AND CUSTOMISABLE ON-CHIP RESOURCE UTILISATION: In NIN-for-CIFAR-10 implementation, each

subgraph has been fine-tuned to utilise high parallelism at the expense of high resource usage. In LeNet-5 and

CIFAR-10 implementations, on the other hand, the design has been fine-tuned to balance between resource

limitation and parallelism. Hence, with appropriate fine-tuning of design parameters, my framework is capable of

delivering highly-customisable implementations, suitable for various application requirements.

FAST PROTOTYPING: The framework enables engineers to fully and easily control the resource-parallelism

trade-off via fine-tuning a folding factor. This greatly simplifies the engineers’ efforts in optimising the FPGA

implementation. Meanwhile, the APIs that execute the FPGA IPs are wrapped into Lasagne-format layers, and

engineers can instantiate my FPGA-accelerated layers in the same manner as Lasagne built-in layers. This allow

engineers to quickly get used to prototyping with my framework. As an evidence for my argument, all three

prototypes above were implemented by me within less than one month’s time.

However, from the above performance analysis, my framework also demonstrates the following problems:

SCALABILITY: The scalability of complete implementation of SDFG on FPGA will inevitably be limited by the

on-chip resources. In order to extend my framework’s scalability, I attempted SDF subgraph implementation,

which can theoretically implement very deep and complex CNNs. However, from the test on NIN-for-CIFAR-10

implementation, I observed problems such as reduced throughput for small batch size and increased memory

footprint. These problems make SDF subgraph implementation less desirable for my project since my scope is

embedded system applications.

HAND-TUNED FIXED-POINT QUANTISATION: In the three tests above, the quantisation was implemented using

hand-tuned scaling factors. Automated dynamic quantisation algorithms, such as Ristretto, can be implemented

on FPGA IPs to reduce quantisation efforts and minimise accuracy loss. [25]

Section 9 explains some future plans which aim to solve these problems.
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9. CONCLUSION AND FURTHER PLANS

This project proposes a fast FPGA prototyping framework for high performance CNN deployment on PYNQ

platform. In order to achieve this aim, a set of design considerations (listed in Table 9.1) have been proposed, and

the appropriate performance metrics have been clarified. With these design considerations in mind, background

research has been carried out, which explains the relevant technical aspects and lists the related works which

my project can refer to. Then, the report details how the design should be implemented, explaining how the

design considerations have been approached based on design space analysis. After that, the report describes the

testing environment that I constructed for validation and experimental setup. Finally, in order to evaluate on the

performance of the framework, three CNN classifier prototypes have been constructed, and their performances

have been compared against published benchmarks, showing that my framework is able to deliver state-of-the-art

CNN deployment performance, while requiring minimal prototyping efforts from engineers.

Table 9.1 provides a list of the design considerations, as well as my design decisions which try to address them.

Design Considera-

tion

Design Decision

LINUX-SIDE
High level inter-

face framework

Theano with Lasagne has been selected, since it requires the least installa-

tion efforts, while providing the most intuitive design interface and the best

supports on embedded CNN deployment as well as customised layer design.

FPGA data transfer

API

The PYNQ’s built-in DMA API has been selected as the CPU-FPGA data trans-

fer API due to high data-streaming throughput.

FPGA-SIDE

Data streaming in-

terface

The data streaming interface is constructed as a combination of AXI4-

Streaming protocol and DMA, since this structure can provide higher data

transmission throughput.

Quantisation Fixed-point data representations are implemented because of smaller on-

chip memory footprint and lower DSP usage. User can parametrise the

implementation bitwidth.

Memory Architec-

ture

For optimal speed performance, all weights are stored in on-chip memory to

minimise memory transfer latency. Weights can be reloaded at runtime.

Design Parametris-

ability

A number of compile-time parameters have been provided, which give engi-

neers the maximum freedom to customise on the hardware’s resource usage

and throughput

Performance Opti-

misation

A number of strategies for improving parallelism have been implemented.

With the limited on-chip resources, the design aims to provide maximum

deployment speedup at the expense of minimum accuracy loss and power

consumption.

Scalability With SDF subgraph implementation, my framework is able to deploy very

large CNN models at the expense of reduced throughput performance.

Table 9.1: Project Design Decision checklist
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In general, all the design considerations listed have been covered with appropriate responses in the project, and

based on the performance evaluation of my three design prototypes, I can conclude that the aims of fast FPGA

prototyping and high performance CNN deployment are well met. However, if more time has been provided,

more implementations could have be attempted which could potentially deliver even better performance. Below

lists some alternative designs which are worthwhile attempting in the future.

• Automatic Quantisation: Currently, in my framework the quantisation needs to be hand-tuned and hard-

coded for each CNN model. For improved simplicity, the quantisation process can be implemented in the

FPGA hardware, where each layer registers the range of each channel of input feature map, and scale it up

to the maximum range defined by the current bitwidth.

• Block Design User Interface: Xilinx Vivado currently does not support HLS designs packaged as user-

customisable block design IPs. Such block design IPs can only be generated by complete RTL projects.

Currently, my IP library can only be parametrised by using a header file in Vivado HLS One workaround

could be to export the automatic generated RTL source code from Vivado HLS, then use this RTL source

code to generate user-customisable block design IPs in Vivado.

• Binarised Neural Network (BNN): Currently, with complete SDFGs implementation, my framework can

only accommodate models up to the scale of LeNet-5 or CIFAR-10 Caffe "quick" version. My current solution

for the scalability issue is SDF subgraph implementation, which is capable of implementing very large

CNNs, at the expense of reduced overall speed and increased memory footprint. Another possible method

to increase scalability is BNN implementation. A network model can be converted to binarised network and

then implemented on FPGA. Binarisation can significantly reduce memory footprint since each weight data

has been represented by one single bit. The dot-product operation has been simplified into batchnorm-

activation and thresholding, reducing the requirement for DSP. Thus, with BNN implementation my

framework should be able to accommodate deeper and more complex CNN models. Research from Xilinx

Ireland Lab has shown very promising results on BNN. Their implementation of BNN on PYNQ has a

sustained throughput of 8620.69 images per second for LeNet-5 and 446.03 images per second for VGG-16,

which are the best speed performances reported to date. Hence, I plan to implement a variation of my

framework which converts CNN models to BNN models, then deploy them on FPGA.[6][41]

• Real-time Application Prototypes: In order to showcase the potential of my framework, applications

which perform real-time classifications can be designed. For example, with some changes, R-CNN can be

implemented based on my existing CNN image classifier prototypes. An automotive front-view road sign

detector or vehicle detector can be implemented using R-CNN.
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(a) Real-time application: front view camera - car detector

(b) Real-time application: front view camera - road sign detec-

tor

10. ABOUT MY EXPERIENCE OF WORKING WITH PYNQ

PYNQ is a perfect platform for my project, which has greatly reduced my designing efforts. Below lists the two

innovative concepts introduced by PYNQ, which are invaluable to my project.

• Embedded OS: When designing an embedded application, having an embedded OS can allow engineers

to work with powerful and user-friendly programming environments. PYNQ provides a Linux Ubuntu

embedded OS installed on the SoC ARM processors, providing full support for Python compilers, Jupyter

Notebooks and any other software that is compatible with Ubuntu. This has greatly simplified my workload

for the project. Thanks to the Linux OS, I can easily install a Theano with Lasagne onto the board as my

framework’s high level interface, or demonstrate the performance of my prototype with Jupyter Notebook,

or even visualise the classification results of my prototypes using "matplot" package in Python.

• "RTL-free" FPGA Design: PYNQ provides us with the possibility of designing an FPGA design without

actually going through RTL designing process. Due to the difference in programming workflow and design

intuitions, RTL has deterred many engineers from ever exploring FPGA platforms. PYNQ provides a concept

of "RTL-free" FPGA design workflow, where engineers can use well-packaged FPGA IPs (overlays) instead of

designing IPs by themselves. This is actually where the idea of my project actually comes from: to design

an open source library of parametrisable FPGA IPs for CNN deployment, so that engineers who wish to

accelerate CNN on FPGA no longer need to design RTL themselves.

Currently, since PYNQ has just been published, there are limited number of reference designs available, and the

library of open source FPGA overlays has not been really developed. In my opinion, for PYNQ to be really well-

acknowledged, more eye-catching PYNQ reference designs need to be published. These reference designs should

not only show high performance provided by FPGA, but also the simplicity in developing embedded designs

on PYNQ platform. In this way, a community of PYNQ developers can be formed, which will contribute more

high-quality overlays and reference designs. I believe that PYNQ has the potential to become a very successful

educational platform, if there is a community of engineers supporting it.
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11. USER GUIDE

This user guide introduces how to deploy FPGA-accelerated LeNet-5 model on PYNQ board using my framework.

The source code and PYNQ SD card image will be available on the github soon, and will be open for free download.

The user guide has been tested on XilinxTM Vivado 2016.1. Before trying this user guide, user should be able to set

up the connection to PYNQ and should flash the PYNQ micro SD card with the image provided in my source code.

11.1. CONSTRUCTING CNN USING MY IP BLOCKS IN XILINXTM VIVADO

Firstly, the CNN model topology needs to be built and fine-tuned in XilinxTM Vivado as a block design IP. The

model topology will be constructed by chaining up CNN layer block design IPs provided by my framework.

1. Open "CNN_BLOCK_DESIGN" project in XilinxTM Vivado. In "Project Manager" panel, open block design

"Design_1". The block design should be empty except for "axis_in", "axis_out", "clk_in" and "rsn_in" ports.

2. In "Flow Navigator", click on "IP Catalogue". Right click on "Vivado Repository" and select "Add Reposi-

tory". Browse to my framework’s directory and click "Select".

3. Return to the block design "Design_1". Right click and select "Add IP...". Add component layers of LeNet-

5 onto the block design, in the correct order as the CNN SDFG. Between adjacent IPs, insert a "AXI4-

Streaming Register Slice" IP to avoid timing violation.

4. Connect all "ap_clk" ports on IP blocks to "clk_in" port. Connect all "ap_rst_n" ports on IP blocks to

"rsn_in" ports. Chain up all IPs with AXI4-Streaming connections.

5. For each CNN layer IP, right click on its block design and select "Customise Block...". Fine-tune the design

parameters based on your design requirements.

6. Click on "Tools", then click "Create and Package IP...". In "Packaging Options", choose "Package a block

design from the current project" and select "Design_1" as the target block design. Choose the packaged

IP location and go to "Next". The packaged block design IP containing your CNN topology should be

generated at the specified location.
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Figure 11.1: Constructing CNN using my IP Blocks in XilinxTM Vivado

11.2. SYNTHESISE BITSTREAM

Secondly, the block design IP packaged from previous step needs to be incorporated into the PYNQ "base" project,

which contains the base overlay architecture including key hardware components such as DMA controller and

DDR port.

1. In XilinxTM Vivado, open the "base" project provided by my source code.

2. Replace the place-holding block design with the CNN block design IP that you have just packaged.

3. Click on "Generate Bitstream".

4. Go to "File"->"Export"->"Export Bitstream" to export the bitstream. Go to "File"->"Export"->"Export Block

Design" to export the block design tickle file, which is required by PYNQ DMA driver.

11.3. DOWNLOAD BITSTREAM TO PYNQ AND LINK TO LASAGNE FPGA LAYER

Thirdly, the synthesised bitstream needs to be downloaded to the PYNQ linux machine. The bitstream will be

linked in the PYNQ API, which is packaged in a Lasagne customised layer function. The bitstream will be down-

loaded and the FPGA IPs will be executed when the Lasagne layer function is executed.

1. Connect to PYNQ board using Jupyter Notebook. Browse to the "Bitstream" folder under my project

directory. Upload both the bitstream and tickle file into the "Bitstream" folder.

2. If both files are using the default names, the Lasagne customised layer should have automatically linked to

the bitstream. Otherwise, go to the "conv_layer.py" file which defines this Lasagne function, and correct the

bitstream file name.
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Figure 11.2: Download Bitstream to PYNQ and Link to Lasagne FPGA Layer

11.4. CNN DEPLOYMENT

Finally, instantiate this CNN in a python script, by declaring a Lasagne CNN that includes my FPGA-accelerated

CNN function.

1. Load the weights of each layer, using "FPGAWeightLoader" function provided in "conv_layer.py". Below is

its function prototype, showing the arguments required.

FPGAWeightLoader(W, index, IFMDim, OFMDim, PadDim, flip_filters=True)

2. Declare the Lasagne CNN which includes the FPGA-accelerated layer. Below is an example showing how

FPGA-accelerated LeNet-5 has been instantiated (FPGA_LENET is the name of the customised layer con-

taining FPGA API).

FPGA_net = {}

FPGA_net[’input’] = InputLayer((None, 1, 28, 28))

FPGA_net[’lenet’] = FPGA_LENET(FPGA_net[’input’])

FPGA_net[’prob’] = NonlinearityLayer(FPGA_net[’lenet’], softmax)

3. Execute the forward propagation in Lasagne syntax.

prob = lasagne.layers.get_output(FPGA_net[’prob’], floatX(test_data[0:batch_size]),

deterministic=True).eval()
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A. CAFFE TESTBENCH SETUP SCRIPT

Listing 4: single_conv_layer.py

import sys

sys.path.insert(0, ’/home/xilinx/caffe/python’)

import numpy as np

import matplotlib.pyplot as plt

import caffe

import cv2

import time

# Work is separated between CPU and FPGA, hence CPU mode is selected

caffe.set_mode_cpu()

# Declare a neural net based on configurations in myconvnet.prototxt

net = caffe.Net(’myconvnet.prototxt’, caffe.TEST)

# Input image is a 32x32 image input_32.png

img = cv2.imread(’input_32.png’, 1)

img_blobinp = img[np.newaxis, :, :, :]

img_blobinp = img_blobinp.transpose(0,3,1,2)

net.blobs[’data’].reshape(*img_blobinp.shape)

net.blobs[’data’].data[...] = img_blobinp

start = time.process_time()

# Execute forward propagation

net.forward()

print("Total forward time")

print(time.process_time()-start)

batch = net.blobs[’conv’].data.transpose(0,2,3,1)

# Output the first 10 output images (in total 32 outputs)

for i in range(10):

cv2.imwrite(’output_image_’ + str(i) + ’.jpg’, batch[i, :, :, :])

# Save the weights in myconvmodel.caffemodel

net.save(’myconvmodel.caffemodel’)

B. CAFFE CNN PROTOBUF CONFIGURATION FILE

Listing 5: myconvnet.prototxt
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# Declaring data layer with blob size of 1x3x32x32:

# 1 image per batch

# 3 colour channels

# 32x32 in dimension

name: "myconvolution"

input: "data"

input_dim: 1

input_dim: 3

input_dim: 32

input_dim: 32

# Declaring a Python Layer that executes convolution on FPGA

layer {

type: ’Python’

name: ’conv’

top: ’conv’

bottom: ’data’

python_param{

module: ’fpga_conv_im2col’

layer: ’FPGAConvLayer’

}

}

C. LENET-5 MODEL TOPOLOGY

Listing 6: LeNet5.py

net = {}

net[’input’] = InputLayer((None, 1, 28, 28))

net[’conv1’] = ConvLayer(net[’input’], num_filters=20, filter_size=5, nonlinearity=linear)

net[’pool1’] = PoolLayer(net[’conv1’], pool_size=2, stride=2, mode=’max’, ignore_border=False)

net[’conv2’] = ConvLayer(net[’pool1’], num_filters=50, filter_size=5, nonlinearity=linear)

net[’pool2’] = PoolLayer(net[’conv2’], pool_size=2, stride=2, mode=’max’, ignore_border=False)

net[’ip1’] = DenseLayer(net[’pool2’], num_units=500, nonlinearity = rectify)

net[’ip2’] = DenseLayer(net[’ip1’], num_units=10, nonlinearity = None)

net[’prob’] = NonlinearityLayer(net[’ip2’], softmax)

D. CIFAR-10 (CAFFE "QUICK" VERSION) MODEL TOPOLOGY

Listing 7: CIFAR10.py

net = {}

net[’input’] = InputLayer((None, 3, 32, 32))

net[’conv1’] = ConvLayer(net[’input’], num_filters=32, filter_size=5, pad=2, nonlinearity=None)
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net[’pool1’] = PoolLayer(net[’conv1’], pool_size=2, stride=2, mode=’max’, ignore_border=False)

net[’relu1’] = NonlinearityLayer(net[’pool1’], rectify)

net[’conv2’] = ConvLayer(net[’relu1’], num_filters=32, filter_size=5, pad=2,

nonlinearity=rectify)

net[’pool2’] = PoolLayer(net[’conv2’], pool_size=2, stride=2, mode=’average_exc_pad’,

ignore_border=False)

net[’conv3’] = ConvLayer(net[’pool2’], num_filters=64, filter_size=5, pad=2,

nonlinearity=rectify)

net[’pool3’] = PoolLayer(net[’conv3’], pool_size=2, stride=2, mode=’average_exc_pad’,

ignore_border=False)

net[’ip1’] = DenseLayer(net[’pool3’], num_units=64, nonlinearity = None)

net[’ip2’] = DenseLayer(net[’ip1’], num_units=10, nonlinearity = None)

net[’prob’] = NonlinearityLayer(net[’ip2’], softmax)

E. NIN-FOR-CIFAR-10 MODEL TOPOLOGY

Listing 8: NIN.py

net = {}

net[’input’] = InputLayer((None, 3, 32, 32))

net[’conv1’] = ConvLayer(net[’input’], num_filters=192, filter_size=5, pad=2,

flip_filters=False)

net[’cccp1’] = ConvLayer(net[’conv1’], num_filters=160, filter_size=1)

net[’cccp2’] = ConvLayer(net[’cccp1’], num_filters=96, filter_size=1)

net[’pool1’] = PoolLayer(net[’cccp2’], pool_size=3, stride=2, mode=’max’, ignore_border=False)

net[’drop3’] = DropoutLayer(net[’pool1’], p=0.5)

net[’conv2’] = ConvLayer(net[’drop3’], num_filters=192, filter_size=5, pad=2)

net[’cccp3’] = ConvLayer(net[’conv2’], num_filters=192, filter_size=1)

net[’cccp4’] = ConvLayer(net[’cccp3’], num_filters=192, filter_size=1)

net[’pool2’] = PoolLayer(net[’cccp4’], pool_size=3, stride=2, mode=’average_exc_pad’,

ignore_border=False)

net[’drop6’] = DropoutLayer(net[’pool2’], p=0.5)

net[’conv3’] = ConvLayer(net[’drop6’], num_filters=192, filter_size=3, pad=1)

net[’cccp5’] = ConvLayer(net[’nin4’], num_filters=192, filter_size=1)

net[’cccp6’] = ConvLayer(net[’cccp5’], num_filters=10, filter_size=1)

net[’pool3’] = PoolLayer(net[’cccp6’], pool_size=8, mode=’average_exc_pad’, ignore_border=False)

net[’output’] = lasagne.layers.FlattenLayer(net[’pool3’])
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